Loading…
Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases
During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation...
Saved in:
Published in: | Biotechnology and bioengineering 2000-07, Vol.69 (2), p.140-149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453 |
container_end_page | 149 |
container_issue | 2 |
container_start_page | 140 |
container_title | Biotechnology and bioengineering |
container_volume | 69 |
creator | Petzelbauer, Inge Zeleny, Reinhard Reiter, Andreas Kulbe, Klaus D. Nidetzky, Bernd |
description | During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000. |
doi_str_mv | 10.1002/(SICI)1097-0290(20000720)69:2<140::AID-BIT3>3.0.CO;2-R |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71233882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71233882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</originalsourceid><addsrcrecordid>eNqFkt9u0zAYxSMEYmXwCsgXCG0XKf6TOElBk0YLI2iiUhmbxM0nx3HaDCcudsoIr8Jb8CA8Ew4tGxJI841l65yfzqfvBMERwWOCMX128D6f5ocEZ0mIaYYPKPYnofiQZxP6gkR4MjnOZ-HL_IwdsTEeT-fPabi4E4yuLXeDkbfwkMUZ3QseOHc5EFLO7wd7BKecsIyNgu8z9UVps25U2yFTIdGije6sCFf1chV2qlkrK7qNVWhtjVTOocpY1K0UUu23vhFdLdGqL63RvavdQNBCdsapCcrzMZrremmckHIlbF2qwTx4TIuKHnVXZiDZxrhOFFqhnz_Cpe6lcXUpnHIPg3uV0E492t37wYfXr86mb8LT-Uk-PT4NZZRFLCxYWZZJnKaUJSLKRMWqiAkhI57EGU8x5TgmcRlzVckirlSCo7QqSUwTKYoiitl-8HTL9SN-3ijXQVM7qbQWrTIbBwmhjA3424SURNTLbieShPtgEfPC861QWuOcVRWsbd0I2wPBMBQBYCgCDFuFYavwpwjAM6DgiwDgiwBDEYABhuncfy88-PEuwaZoVPkXdrt5L3iyEwgnha6saGXtbnQRIxmjNwGvaq36f9LdGu4_2X6_PTjcgmvXqa_XYGE_AU9YEsPFuxN4-5Gni3N2ATP2Cw8M7T4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17668043</pqid></control><display><type>article</type><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><source>Wiley</source><creator>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</creator><creatorcontrib>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</creatorcontrib><description>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/(SICI)1097-0290(20000720)69:2<140::AID-BIT3>3.0.CO;2-R</identifier><identifier>PMID: 10861393</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>b-glycosidase ; Bioconversions. Hemisynthesis ; Biodegradation ; Biological and medical sciences ; Biotechnology ; Catalysis ; Composition effects ; Enzyme Stability ; Enzymes ; Fundamental and applied biological sciences. Psychology ; galactooligosaccharides ; Glycoside Hydrolases - metabolism ; Hot Temperature ; Hydrolysis ; lactose ; Lactose - metabolism ; Methods. Procedures. Technologies ; oligosaccharides ; Oligosaccharides - biosynthesis ; Polysaccharides ; Pyrococcus furiosus - enzymology ; Reaction kinetics ; Sulfolobus - enzymology ; Thermodynamic stability ; thermostable glycosidases</subject><ispartof>Biotechnology and bioengineering, 2000-07, Vol.69 (2), p.140-149</ispartof><rights>Copyright © 2000 John Wiley & Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1431932$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10861393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petzelbauer, Inge</creatorcontrib><creatorcontrib>Zeleny, Reinhard</creatorcontrib><creatorcontrib>Reiter, Andreas</creatorcontrib><creatorcontrib>Kulbe, Klaus D.</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</description><subject>b-glycosidase</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biodegradation</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Composition effects</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactooligosaccharides</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>lactose</subject><subject>Lactose - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>oligosaccharides</subject><subject>Oligosaccharides - biosynthesis</subject><subject>Polysaccharides</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Reaction kinetics</subject><subject>Sulfolobus - enzymology</subject><subject>Thermodynamic stability</subject><subject>thermostable glycosidases</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkt9u0zAYxSMEYmXwCsgXCG0XKf6TOElBk0YLI2iiUhmbxM0nx3HaDCcudsoIr8Jb8CA8Ew4tGxJI841l65yfzqfvBMERwWOCMX128D6f5ocEZ0mIaYYPKPYnofiQZxP6gkR4MjnOZ-HL_IwdsTEeT-fPabi4E4yuLXeDkbfwkMUZ3QseOHc5EFLO7wd7BKecsIyNgu8z9UVps25U2yFTIdGije6sCFf1chV2qlkrK7qNVWhtjVTOocpY1K0UUu23vhFdLdGqL63RvavdQNBCdsapCcrzMZrremmckHIlbF2qwTx4TIuKHnVXZiDZxrhOFFqhnz_Cpe6lcXUpnHIPg3uV0E492t37wYfXr86mb8LT-Uk-PT4NZZRFLCxYWZZJnKaUJSLKRMWqiAkhI57EGU8x5TgmcRlzVckirlSCo7QqSUwTKYoiitl-8HTL9SN-3ijXQVM7qbQWrTIbBwmhjA3424SURNTLbieShPtgEfPC861QWuOcVRWsbd0I2wPBMBQBYCgCDFuFYavwpwjAM6DgiwDgiwBDEYABhuncfy88-PEuwaZoVPkXdrt5L3iyEwgnha6saGXtbnQRIxmjNwGvaq36f9LdGu4_2X6_PTjcgmvXqa_XYGE_AU9YEsPFuxN4-5Gni3N2ATP2Cw8M7T4</recordid><startdate>20000720</startdate><enddate>20000720</enddate><creator>Petzelbauer, Inge</creator><creator>Zeleny, Reinhard</creator><creator>Reiter, Andreas</creator><creator>Kulbe, Klaus D.</creator><creator>Nidetzky, Bernd</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000720</creationdate><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><author>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>b-glycosidase</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biodegradation</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Composition effects</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactooligosaccharides</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>lactose</topic><topic>Lactose - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>oligosaccharides</topic><topic>Oligosaccharides - biosynthesis</topic><topic>Polysaccharides</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Reaction kinetics</topic><topic>Sulfolobus - enzymology</topic><topic>Thermodynamic stability</topic><topic>thermostable glycosidases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petzelbauer, Inge</creatorcontrib><creatorcontrib>Zeleny, Reinhard</creatorcontrib><creatorcontrib>Reiter, Andreas</creatorcontrib><creatorcontrib>Kulbe, Klaus D.</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petzelbauer, Inge</au><au>Zeleny, Reinhard</au><au>Reiter, Andreas</au><au>Kulbe, Klaus D.</au><au>Nidetzky, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2000-07-20</date><risdate>2000</risdate><volume>69</volume><issue>2</issue><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10861393</pmid><doi>10.1002/(SICI)1097-0290(20000720)69:2<140::AID-BIT3>3.0.CO;2-R</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2000-07, Vol.69 (2), p.140-149 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_71233882 |
source | Wiley |
subjects | b-glycosidase Bioconversions. Hemisynthesis Biodegradation Biological and medical sciences Biotechnology Catalysis Composition effects Enzyme Stability Enzymes Fundamental and applied biological sciences. Psychology galactooligosaccharides Glycoside Hydrolases - metabolism Hot Temperature Hydrolysis lactose Lactose - metabolism Methods. Procedures. Technologies oligosaccharides Oligosaccharides - biosynthesis Polysaccharides Pyrococcus furiosus - enzymology Reaction kinetics Sulfolobus - enzymology Thermodynamic stability thermostable glycosidases |
title | Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20ultra-high-temperature%20process%20for%20the%20enzymatic%20hydrolysis%20of%20lactose:%20II.%20Oligosaccharide%20formation%20by%20two%20thermostable%20%CE%B2-glycosidases&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Petzelbauer,%20Inge&rft.date=2000-07-20&rft.volume=69&rft.issue=2&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/(SICI)1097-0290(20000720)69:2%3C140::AID-BIT3%3E3.0.CO;2-R&rft_dat=%3Cproquest_cross%3E71233882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17668043&rft_id=info:pmid/10861393&rfr_iscdi=true |