Loading…

Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases

During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2000-07, Vol.69 (2), p.140-149
Main Authors: Petzelbauer, Inge, Zeleny, Reinhard, Reiter, Andreas, Kulbe, Klaus D., Nidetzky, Bernd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453
container_end_page 149
container_issue 2
container_start_page 140
container_title Biotechnology and bioengineering
container_volume 69
creator Petzelbauer, Inge
Zeleny, Reinhard
Reiter, Andreas
Kulbe, Klaus D.
Nidetzky, Bernd
description During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.
doi_str_mv 10.1002/(SICI)1097-0290(20000720)69:2<140::AID-BIT3>3.0.CO;2-R
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71233882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71233882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</originalsourceid><addsrcrecordid>eNqFkt9u0zAYxSMEYmXwCsgXCG0XKf6TOElBk0YLI2iiUhmbxM0nx3HaDCcudsoIr8Jb8CA8Ew4tGxJI841l65yfzqfvBMERwWOCMX128D6f5ocEZ0mIaYYPKPYnofiQZxP6gkR4MjnOZ-HL_IwdsTEeT-fPabi4E4yuLXeDkbfwkMUZ3QseOHc5EFLO7wd7BKecsIyNgu8z9UVps25U2yFTIdGije6sCFf1chV2qlkrK7qNVWhtjVTOocpY1K0UUu23vhFdLdGqL63RvavdQNBCdsapCcrzMZrremmckHIlbF2qwTx4TIuKHnVXZiDZxrhOFFqhnz_Cpe6lcXUpnHIPg3uV0E492t37wYfXr86mb8LT-Uk-PT4NZZRFLCxYWZZJnKaUJSLKRMWqiAkhI57EGU8x5TgmcRlzVckirlSCo7QqSUwTKYoiitl-8HTL9SN-3ijXQVM7qbQWrTIbBwmhjA3424SURNTLbieShPtgEfPC861QWuOcVRWsbd0I2wPBMBQBYCgCDFuFYavwpwjAM6DgiwDgiwBDEYABhuncfy88-PEuwaZoVPkXdrt5L3iyEwgnha6saGXtbnQRIxmjNwGvaq36f9LdGu4_2X6_PTjcgmvXqa_XYGE_AU9YEsPFuxN4-5Gni3N2ATP2Cw8M7T4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17668043</pqid></control><display><type>article</type><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><source>Wiley</source><creator>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</creator><creatorcontrib>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</creatorcontrib><description>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/(SICI)1097-0290(20000720)69:2&lt;140::AID-BIT3&gt;3.0.CO;2-R</identifier><identifier>PMID: 10861393</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>b-glycosidase ; Bioconversions. Hemisynthesis ; Biodegradation ; Biological and medical sciences ; Biotechnology ; Catalysis ; Composition effects ; Enzyme Stability ; Enzymes ; Fundamental and applied biological sciences. Psychology ; galactooligosaccharides ; Glycoside Hydrolases - metabolism ; Hot Temperature ; Hydrolysis ; lactose ; Lactose - metabolism ; Methods. Procedures. Technologies ; oligosaccharides ; Oligosaccharides - biosynthesis ; Polysaccharides ; Pyrococcus furiosus - enzymology ; Reaction kinetics ; Sulfolobus - enzymology ; Thermodynamic stability ; thermostable glycosidases</subject><ispartof>Biotechnology and bioengineering, 2000-07, Vol.69 (2), p.140-149</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1431932$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10861393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petzelbauer, Inge</creatorcontrib><creatorcontrib>Zeleny, Reinhard</creatorcontrib><creatorcontrib>Reiter, Andreas</creatorcontrib><creatorcontrib>Kulbe, Klaus D.</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</description><subject>b-glycosidase</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biodegradation</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Composition effects</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactooligosaccharides</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>lactose</subject><subject>Lactose - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>oligosaccharides</subject><subject>Oligosaccharides - biosynthesis</subject><subject>Polysaccharides</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Reaction kinetics</subject><subject>Sulfolobus - enzymology</subject><subject>Thermodynamic stability</subject><subject>thermostable glycosidases</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkt9u0zAYxSMEYmXwCsgXCG0XKf6TOElBk0YLI2iiUhmbxM0nx3HaDCcudsoIr8Jb8CA8Ew4tGxJI841l65yfzqfvBMERwWOCMX128D6f5ocEZ0mIaYYPKPYnofiQZxP6gkR4MjnOZ-HL_IwdsTEeT-fPabi4E4yuLXeDkbfwkMUZ3QseOHc5EFLO7wd7BKecsIyNgu8z9UVps25U2yFTIdGije6sCFf1chV2qlkrK7qNVWhtjVTOocpY1K0UUu23vhFdLdGqL63RvavdQNBCdsapCcrzMZrremmckHIlbF2qwTx4TIuKHnVXZiDZxrhOFFqhnz_Cpe6lcXUpnHIPg3uV0E492t37wYfXr86mb8LT-Uk-PT4NZZRFLCxYWZZJnKaUJSLKRMWqiAkhI57EGU8x5TgmcRlzVckirlSCo7QqSUwTKYoiitl-8HTL9SN-3ijXQVM7qbQWrTIbBwmhjA3424SURNTLbieShPtgEfPC861QWuOcVRWsbd0I2wPBMBQBYCgCDFuFYavwpwjAM6DgiwDgiwBDEYABhuncfy88-PEuwaZoVPkXdrt5L3iyEwgnha6saGXtbnQRIxmjNwGvaq36f9LdGu4_2X6_PTjcgmvXqa_XYGE_AU9YEsPFuxN4-5Gni3N2ATP2Cw8M7T4</recordid><startdate>20000720</startdate><enddate>20000720</enddate><creator>Petzelbauer, Inge</creator><creator>Zeleny, Reinhard</creator><creator>Reiter, Andreas</creator><creator>Kulbe, Klaus D.</creator><creator>Nidetzky, Bernd</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000720</creationdate><title>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</title><author>Petzelbauer, Inge ; Zeleny, Reinhard ; Reiter, Andreas ; Kulbe, Klaus D. ; Nidetzky, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>b-glycosidase</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biodegradation</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Composition effects</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactooligosaccharides</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>lactose</topic><topic>Lactose - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>oligosaccharides</topic><topic>Oligosaccharides - biosynthesis</topic><topic>Polysaccharides</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Reaction kinetics</topic><topic>Sulfolobus - enzymology</topic><topic>Thermodynamic stability</topic><topic>thermostable glycosidases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petzelbauer, Inge</creatorcontrib><creatorcontrib>Zeleny, Reinhard</creatorcontrib><creatorcontrib>Reiter, Andreas</creatorcontrib><creatorcontrib>Kulbe, Klaus D.</creatorcontrib><creatorcontrib>Nidetzky, Bernd</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petzelbauer, Inge</au><au>Zeleny, Reinhard</au><au>Reiter, Andreas</au><au>Kulbe, Klaus D.</au><au>Nidetzky, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2000-07-20</date><risdate>2000</risdate><volume>69</volume><issue>2</issue><spage>140</spage><epage>149</epage><pages>140-149</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>During lactose conversion at 70°C, when catalyzed by β‐glycosidases from the archea Sulfolobus solfataricus (SsβGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion‐exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsβGly. However, the product spectrum of SsβGly is richer in trisaccharides, and this agrees with results obtained from the steady‐state kinetics analyses of galactosyl transfer catalyzed by SsβGly and CelB. The major transgalactosylation products of SsβGly and CelB have been identified. They are β‐D‐Galp‐(1→3)‐Glc and β‐D‐Galp‐(1→6)‐Glc, and β‐D‐Galp‐(1→3)‐lactose and β‐D‐Galp‐(1→6)‐lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate β(1→6)‐linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable β‐glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 140–149, 2000.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10861393</pmid><doi>10.1002/(SICI)1097-0290(20000720)69:2&lt;140::AID-BIT3&gt;3.0.CO;2-R</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2000-07, Vol.69 (2), p.140-149
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_71233882
source Wiley
subjects b-glycosidase
Bioconversions. Hemisynthesis
Biodegradation
Biological and medical sciences
Biotechnology
Catalysis
Composition effects
Enzyme Stability
Enzymes
Fundamental and applied biological sciences. Psychology
galactooligosaccharides
Glycoside Hydrolases - metabolism
Hot Temperature
Hydrolysis
lactose
Lactose - metabolism
Methods. Procedures. Technologies
oligosaccharides
Oligosaccharides - biosynthesis
Polysaccharides
Pyrococcus furiosus - enzymology
Reaction kinetics
Sulfolobus - enzymology
Thermodynamic stability
thermostable glycosidases
title Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose: II. Oligosaccharide formation by two thermostable β-glycosidases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20ultra-high-temperature%20process%20for%20the%20enzymatic%20hydrolysis%20of%20lactose:%20II.%20Oligosaccharide%20formation%20by%20two%20thermostable%20%CE%B2-glycosidases&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Petzelbauer,%20Inge&rft.date=2000-07-20&rft.volume=69&rft.issue=2&rft.spage=140&rft.epage=149&rft.pages=140-149&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/(SICI)1097-0290(20000720)69:2%3C140::AID-BIT3%3E3.0.CO;2-R&rft_dat=%3Cproquest_cross%3E71233882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4943-b3ddd7588237a49af3f43aac46759680260515d56efcb5fe7048fd1527cabb453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17668043&rft_id=info:pmid/10861393&rfr_iscdi=true