Loading…
The Approach of a Neuron Population Firing Rate to a New Equilibrium: An Exact Theoretical Result
The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite...
Saved in:
Published in: | Neural computation 2000-05, Vol.12 (5), p.1045-1055 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The response of a noninteracting population of identical neurons to a step change in steady synaptic input can be analytically calculated exactly from the dynamical equation that describes the population's evolution in time. Here, for model integrate-and-fire neurons that undergo a fixed finite upward shift in voltage in response to each synaptic event, we compare the theoretical prediction with the result of a direct simulation of 90,000 model neurons. The degree of agreement supports the applicability of the population dynamics equation. The theoretical prediction is in the form of a series. Convergence is rapid, so that the full result is well approximated by a few terms. |
---|---|
ISSN: | 0899-7667 1530-888X |
DOI: | 10.1162/089976600300015493 |