Loading…
Consistent knowledge discovery in medical diagnosis
Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction am...
Saved in:
Published in: | IEEE engineering in medicine and biology magazine 2000-07, Vol.19 (4), p.26-37 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183 |
container_end_page | 37 |
container_issue | 4 |
container_start_page | 26 |
container_title | IEEE engineering in medicine and biology magazine |
container_volume | 19 |
creator | Kovalerchuk, B. Vityaev, E. Ruiz, J.F. |
description | Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems. |
doi_str_mv | 10.1109/51.853479 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71261792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>853479</ieee_id><sourcerecordid>28762370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTg1cPMjwIHjrz8jtHGf6CgRc9h7RJR2fXzKZV9t8b6RDxslNC8nmPl3wROgc8A8D6lsNMccqkPkBj0FRmDJQ4RGMsqc44SD5CJzGuMAbGJD9Go1QEQlI8RnQemljFzjfd9L0JX7V3Sz91VSzCp2-306qZrr2rClunQ7tsQsKn6Ki0dfRnu3WC3h7uX-dP2eLl8Xl-t8gKSqDLmLKlll44lgvHcyWpcopor1WhHWM-7cvCaW5LCoLxguWly1mOS26BS1B0gq6Hvps2fPQ-dmad5vJ1bRsf-mgkEAFSk72QKCkIlXg_lIRy4CLBq39wFfq2Sa81SnFMONU6oZsBFW2IsfWl2bTV2rZbA9j8BGM4mCGYZC93Dfs8fegfOSSRwMUAKu_97_Wu-hu_6I6e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885025399</pqid></control><display><type>article</type><title>Consistent knowledge discovery in medical diagnosis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</creator><creatorcontrib>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</creatorcontrib><description>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.853479</identifier><identifier>PMID: 10916730</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Biomedical Engineering ; Biomedical imaging ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - diagnostic imaging ; Data mining ; Databases, Factual ; Diagnosis, Computer-Assisted ; Expert Systems ; Female ; Humans ; Independent component analysis ; Mammography ; Medical diagnosis ; Medical diagnostic imaging ; Shape ; Uncertainty</subject><ispartof>IEEE engineering in medicine and biology magazine, 2000-07, Vol.19 (4), p.26-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</citedby><cites>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/853479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10916730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovalerchuk, B.</creatorcontrib><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Ruiz, J.F.</creatorcontrib><title>Consistent knowledge discovery in medical diagnosis</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</description><subject>Artificial Intelligence</subject><subject>Biomedical Engineering</subject><subject>Biomedical imaging</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Data mining</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Expert Systems</subject><subject>Female</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Shape</subject><subject>Uncertainty</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_AgipvTg1cPMjwIHjrz8jtHGf6CgRc9h7RJR2fXzKZV9t8b6RDxslNC8nmPl3wROgc8A8D6lsNMccqkPkBj0FRmDJQ4RGMsqc44SD5CJzGuMAbGJD9Go1QEQlI8RnQemljFzjfd9L0JX7V3Sz91VSzCp2-306qZrr2rClunQ7tsQsKn6Ki0dfRnu3WC3h7uX-dP2eLl8Xl-t8gKSqDLmLKlll44lgvHcyWpcopor1WhHWM-7cvCaW5LCoLxguWly1mOS26BS1B0gq6Hvps2fPQ-dmad5vJ1bRsf-mgkEAFSk72QKCkIlXg_lIRy4CLBq39wFfq2Sa81SnFMONU6oZsBFW2IsfWl2bTV2rZbA9j8BGM4mCGYZC93Dfs8fegfOSSRwMUAKu_97_Wu-hu_6I6e</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>Kovalerchuk, B.</creator><creator>Vityaev, E.</creator><creator>Ruiz, J.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>7X8</scope></search><sort><creationdate>200007</creationdate><title>Consistent knowledge discovery in medical diagnosis</title><author>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial Intelligence</topic><topic>Biomedical Engineering</topic><topic>Biomedical imaging</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Data mining</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Expert Systems</topic><topic>Female</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovalerchuk, B.</creatorcontrib><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Ruiz, J.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalerchuk, B.</au><au>Vityaev, E.</au><au>Ruiz, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent knowledge discovery in medical diagnosis</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>2000-07</date><risdate>2000</risdate><volume>19</volume><issue>4</issue><spage>26</spage><epage>37</epage><pages>26-37</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>10916730</pmid><doi>10.1109/51.853479</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-5175 |
ispartof | IEEE engineering in medicine and biology magazine, 2000-07, Vol.19 (4), p.26-37 |
issn | 0739-5175 1937-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_71261792 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial Intelligence Biomedical Engineering Biomedical imaging Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - diagnostic imaging Data mining Databases, Factual Diagnosis, Computer-Assisted Expert Systems Female Humans Independent component analysis Mammography Medical diagnosis Medical diagnostic imaging Shape Uncertainty |
title | Consistent knowledge discovery in medical diagnosis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20knowledge%20discovery%20in%20medical%20diagnosis&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Kovalerchuk,%20B.&rft.date=2000-07&rft.volume=19&rft.issue=4&rft.spage=26&rft.epage=37&rft.pages=26-37&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.853479&rft_dat=%3Cproquest_pubme%3E28762370%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885025399&rft_id=info:pmid/10916730&rft_ieee_id=853479&rfr_iscdi=true |