Loading…

Consistent knowledge discovery in medical diagnosis

Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction am...

Full description

Saved in:
Bibliographic Details
Published in:IEEE engineering in medicine and biology magazine 2000-07, Vol.19 (4), p.26-37
Main Authors: Kovalerchuk, B., Vityaev, E., Ruiz, J.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183
cites cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183
container_end_page 37
container_issue 4
container_start_page 26
container_title IEEE engineering in medicine and biology magazine
container_volume 19
creator Kovalerchuk, B.
Vityaev, E.
Ruiz, J.F.
description Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.
doi_str_mv 10.1109/51.853479
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71261792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>853479</ieee_id><sourcerecordid>28762370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTg1cPMjwIHjrz8jtHGf6CgRc9h7RJR2fXzKZV9t8b6RDxslNC8nmPl3wROgc8A8D6lsNMccqkPkBj0FRmDJQ4RGMsqc44SD5CJzGuMAbGJD9Go1QEQlI8RnQemljFzjfd9L0JX7V3Sz91VSzCp2-306qZrr2rClunQ7tsQsKn6Ki0dfRnu3WC3h7uX-dP2eLl8Xl-t8gKSqDLmLKlll44lgvHcyWpcopor1WhHWM-7cvCaW5LCoLxguWly1mOS26BS1B0gq6Hvps2fPQ-dmad5vJ1bRsf-mgkEAFSk72QKCkIlXg_lIRy4CLBq39wFfq2Sa81SnFMONU6oZsBFW2IsfWl2bTV2rZbA9j8BGM4mCGYZC93Dfs8fegfOSSRwMUAKu_97_Wu-hu_6I6e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885025399</pqid></control><display><type>article</type><title>Consistent knowledge discovery in medical diagnosis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</creator><creatorcontrib>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</creatorcontrib><description>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</description><identifier>ISSN: 0739-5175</identifier><identifier>EISSN: 1937-4186</identifier><identifier>DOI: 10.1109/51.853479</identifier><identifier>PMID: 10916730</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial Intelligence ; Biomedical Engineering ; Biomedical imaging ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - diagnostic imaging ; Data mining ; Databases, Factual ; Diagnosis, Computer-Assisted ; Expert Systems ; Female ; Humans ; Independent component analysis ; Mammography ; Medical diagnosis ; Medical diagnostic imaging ; Shape ; Uncertainty</subject><ispartof>IEEE engineering in medicine and biology magazine, 2000-07, Vol.19 (4), p.26-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</citedby><cites>FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/853479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10916730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kovalerchuk, B.</creatorcontrib><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Ruiz, J.F.</creatorcontrib><title>Consistent knowledge discovery in medical diagnosis</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</description><subject>Artificial Intelligence</subject><subject>Biomedical Engineering</subject><subject>Biomedical imaging</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Data mining</subject><subject>Databases, Factual</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Expert Systems</subject><subject>Female</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Shape</subject><subject>Uncertainty</subject><issn>0739-5175</issn><issn>1937-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqF0c9LwzAUB_AgipvTg1cPMjwIHjrz8jtHGf6CgRc9h7RJR2fXzKZV9t8b6RDxslNC8nmPl3wROgc8A8D6lsNMccqkPkBj0FRmDJQ4RGMsqc44SD5CJzGuMAbGJD9Go1QEQlI8RnQemljFzjfd9L0JX7V3Sz91VSzCp2-306qZrr2rClunQ7tsQsKn6Ki0dfRnu3WC3h7uX-dP2eLl8Xl-t8gKSqDLmLKlll44lgvHcyWpcopor1WhHWM-7cvCaW5LCoLxguWly1mOS26BS1B0gq6Hvps2fPQ-dmad5vJ1bRsf-mgkEAFSk72QKCkIlXg_lIRy4CLBq39wFfq2Sa81SnFMONU6oZsBFW2IsfWl2bTV2rZbA9j8BGM4mCGYZC93Dfs8fegfOSSRwMUAKu_97_Wu-hu_6I6e</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>Kovalerchuk, B.</creator><creator>Vityaev, E.</creator><creator>Ruiz, J.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>7X8</scope></search><sort><creationdate>200007</creationdate><title>Consistent knowledge discovery in medical diagnosis</title><author>Kovalerchuk, B. ; Vityaev, E. ; Ruiz, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Artificial Intelligence</topic><topic>Biomedical Engineering</topic><topic>Biomedical imaging</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Data mining</topic><topic>Databases, Factual</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Expert Systems</topic><topic>Female</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Shape</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Kovalerchuk, B.</creatorcontrib><creatorcontrib>Vityaev, E.</creatorcontrib><creatorcontrib>Ruiz, J.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalerchuk, B.</au><au>Vityaev, E.</au><au>Ruiz, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent knowledge discovery in medical diagnosis</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>2000-07</date><risdate>2000</risdate><volume>19</volume><issue>4</issue><spage>26</spage><epage>37</epage><pages>26-37</pages><issn>0739-5175</issn><eissn>1937-4186</eissn><coden>IEMBDE</coden><abstract>Discusses eliminating contradictions among rules in computer-aided systems, experts rules, and databases. The study has demonstrated how consistent data mining in medical diagnosis can create a set of logical diagnostic rules for computer-aided diagnostic systems. Consistency avoids contradiction among rules generated using data mining software, rules used by an experienced radiologist, and a database of pathologically confirmed cases. The authors identified major problems: to find contradiction between diagnostic rules and to eliminate contradiction. They applied two complimentary intelligent technologies for extraction of rules and recognition of their contradictions. The first technique is based on discovering statistically significant logical diagnostic rules. The second technique is based on the restoration of a monotone Boolean function to generate a minimal dynamic sequence of questions to a medical expert. The results of this mutual verification of expert and data-driven rules demonstrate feasibility of the approach for designing consistent computer-aided diagnostic systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>10916730</pmid><doi>10.1109/51.853479</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0739-5175
ispartof IEEE engineering in medicine and biology magazine, 2000-07, Vol.19 (4), p.26-37
issn 0739-5175
1937-4186
language eng
recordid cdi_proquest_miscellaneous_71261792
source IEEE Electronic Library (IEL) Journals
subjects Artificial Intelligence
Biomedical Engineering
Biomedical imaging
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Data mining
Databases, Factual
Diagnosis, Computer-Assisted
Expert Systems
Female
Humans
Independent component analysis
Mammography
Medical diagnosis
Medical diagnostic imaging
Shape
Uncertainty
title Consistent knowledge discovery in medical diagnosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20knowledge%20discovery%20in%20medical%20diagnosis&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Kovalerchuk,%20B.&rft.date=2000-07&rft.volume=19&rft.issue=4&rft.spage=26&rft.epage=37&rft.pages=26-37&rft.issn=0739-5175&rft.eissn=1937-4186&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.853479&rft_dat=%3Cproquest_pubme%3E28762370%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-48af97e6d4b6d5b8738d829e98c9d44e829fcd95af31645c4bfdb4b0f5a157183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=885025399&rft_id=info:pmid/10916730&rft_ieee_id=853479&rfr_iscdi=true