Loading…

The Parahippocampal Region: Corticocortical Connectivity

: The parahippocampal region, as defined in this review, comprises the cortical regions that surround the rodent hippocampus including the perirhinal, postrhinal, and entorhinal cortices. The comparable regions in the primate brain are the perirhinal, parahippocampal, and entorhinal cortices. The pe...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2000-06, Vol.911 (1), p.25-42
Main Author: BURWELL, REBECCA D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:: The parahippocampal region, as defined in this review, comprises the cortical regions that surround the rodent hippocampus including the perirhinal, postrhinal, and entorhinal cortices. The comparable regions in the primate brain are the perirhinal, parahippocampal, and entorhinal cortices. The perirhinal and postrhinal/parahippocampal cortices provide the major polysensory input to the hippocampus through their entorhinal connections and are the recipients of differing combinations of sensory information. The differences in the perirhinal and postrhinal cortical afferentation have important functional implications, in part, because these two regions project with different terminal patterns to the entorhinal cortex. The perirhinal cortex projects preferentially to the lateral entorhinal area (LEA), and the postrhinal cortex projects preferentially to the medial entorhinal area (MEA) and the caudal portion of LEA. Although the perirhinal and postrhinal cortices provide the major cortical input to the entorhinal cortex, the entorhinal cortex itself receives some direct cortical input. An examination of the cortical afferentation of the entorhinal cortex reveals an interesting principle of connectivity among these regions; the composition of the direct neocortical input to the LEA is more similar to that of the perirhinal cortex, and the composition of the direct neocortical input to the MEA is more similar to that of the postrhinal cortex. Thus, polymodal associational input to the LEA and the MEA exhibits some segregation and is organized in parallel. The organization of intrinsic connections for each of the parahippocampal regions also contributes to the segregation of information into parallel pathways.
ISSN:0077-8923
1749-6632
DOI:10.1111/j.1749-6632.2000.tb06717.x