Loading…
Influence of ruminal biohydrogenation on the feeding value of fat in finishing diets for feedlot cattle
Four Holstein steers (212 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to study the influence of degree of ruminal biohydrogenation (BH) on the feeding value of supplemental fat. Treatments consisted of an 88% concentrate finishing diet supplement...
Saved in:
Published in: | Journal of animal science 2000-07, Vol.78 (7), p.1738-1746 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Four Holstein steers (212 kg) with cannulas in the rumen and proximal duodenum were used in a 4 x 4 Latin square experiment to study the influence of degree of ruminal biohydrogenation (BH) on the feeding value of supplemental fat. Treatments consisted of an 88% concentrate finishing diet supplemented with 1) 2% yellow grease (control); 2) 4% formaldehyde-protected fat (Rumentek), 2% yellow grease (LBH); 3) 2% Rumentek, 4% yellow grease (MBH); or 4) 6% yellow grease (HBH). Ruminal BH of HBH, MBH, and LBH diets was 74, 68, and 54%, respectively. High-fat supplementation decreased (7%, P < .05) intestinal digestibility of 18:0 but increased intestinal digestibility of 18:1 (3%, P < .10), 18:2 (14%, P < .01), and 18:3 (23%, P < .05). Increases in intestinal digestibility of 18:0 (quadratic effect, P < .05), 18:1 (linear effect, P < .01), 18:2 (linear effect, P < .01), 18:3 (linear effect, P < .05), and total fatty acids (linear effect, P < .05) were inversely related to BH. For every 1% increase in the proportion of 18:1 fat entering the small intestine, the digestibility of 18:0 increased 1%. High-fat supplementation depressed ruminal digestion of OM (11%, P < .05), NDF (16%, P < .05), starch (6%, P < .05), and feed N (12%, P < .01). Formaldehyde-protein protection of fat diminished its depressing effects on ruminal digestion of NDF (quadratic effect, P < .10) and enhanced ruminal escape of feed N (linear effect, P < .10). Postruminal digestion of OM was greater (4.6%, P < .10) for high-fat diets. High-fat diets decreased (P < .05) total tract digestion of OM (1.9%), NDF (7.4%), and starch (.5%). Postruminal and total tract digestibility of OM, NDF, N, and starch was not affected (P > .10) by BH. In a 125-d finishing trial, 100 yearling steers (362 kg) were used to evaluate treatment effects on growth performance. High-fat diets did not affect (P > .10) ADG but increased (P < .10) feed efficiency (9%, P < .10), dietary NEm (7.6%, P < .05), and dressing percentage (9%, P < .05). The magnitude of the increase in dressing percentage was inversely related (linear effect, P < .10) to BH. We conclude that decreasing ruminal BH will increase postruminal digestibility of fat, and hence the NE value of dietary fat. The synergistic effect of increasing the proportion of 18:1 on intestinal digestion of fat enables higher levels of fat supplementation. Protecting fat from BH minimizes the detrimental effects of supplemental fat on fiber digestion. |
---|---|
ISSN: | 0021-8812 1525-3163 0021-8812 |
DOI: | 10.2527/2000.7871738x |