Loading…
Leptin and the regulation of food intake, energy homeostasis and immunity with special focus on periparturient ruminants
The biology of leptin has been studied most extensively in rodents and in humans. Leptin is involved in the regulation of food intake, energy homeostasis and immunity. Leptin is primarily produced in white adipose tissue and acts via a family of membrane bound receptors, including an isoform with a...
Saved in:
Published in: | Domestic animal endocrinology 2001-11, Vol.21 (4), p.215-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The biology of leptin has been studied most extensively in rodents and in humans. Leptin is involved in the regulation of food intake, energy homeostasis and immunity. Leptin is primarily produced in white adipose tissue and acts via a family of membrane bound receptors, including an isoform with a long intracellular domain (OB-Rb), and many isoforms with short intracellular domains (Ob-Rs). OB-Rb is predominantly expressed in the hypothalamic regions involved in the regulation of food intake and energy homeostasis. The other isoforms are distributed ubiquitously and are found in most peripheral tissues in far greater abundance than OB-Rb. The effects of leptin on food intake and energy homeostasis are central and are mediated via a network of orexigenic neuropeptides (neuropeptide Y, galanin, galanin-like peptide, melanin-concentrating hormone, orexins, agouti-related peptide) and anorexigenic neuropeptides (corticotropin-releasing hormone, pro-opiomelanocortin, α-melanocyte stimulating hormone and cocaine- and amphetamine-regulated transcript). In addition, leptin acts directly on immune cells to stimulate hematopoesis, T-cell immunity, phagocytosis, cytokine production, and to attenuate susceptibility to infectious insults. Emerging data in ruminants suggest that leptin is dynamically regulated by many factors and physiological states. Thus, leptin is secreted in a pulsatile fashion, but without a marked diurnal rhythm. A positive relationship between adiposity and plasma leptin concentration exists in growing and lactating ruminants. The concentration of plasma leptin increases during pregnancy, starts to decline 1–2 wk before parturition, and reaches a nadir in early lactation. The reduction of plasma leptin at parturition is likely to promote centrally mediated adaptations required in periods of energy deficit, but could have negative effects on immune cell function. Future research is needed in ruminants to address the roles played by leptin and the central nervous system in orchestrating metabolism during the periparturient period and during infectious diseases. |
---|---|
ISSN: | 0739-7240 1879-0054 |
DOI: | 10.1016/S0739-7240(02)00119-4 |