Loading…
Finite size disc gradient coil set for open vertical field magnets
A new analytical approach is used in the design of disc-like gradient coils suitable for magnet geometries with main field direction perpendicular to the surface of the disc. An inverse procedure is used to optimize the coil’s characteristics, subject to the restrictions imposed by the desired field...
Saved in:
Published in: | Magnetic resonance imaging 2000-06, Vol.18 (5), p.615-624 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new analytical approach is used in the design of disc-like gradient coils suitable for magnet geometries with main field direction perpendicular to the surface of the disc. An inverse procedure is used to optimize the coil’s characteristics, subject to the restrictions imposed by the desired field behavior over a certain set of constraint points inside a predetermined imaging volume. Excellent agreement between the expected values of the gradient magnetic field and the numerical values generated by applying the Biot-Savart law to a discrete current pattern of the perspective disc coil was found. A Finite Element Analysis package was used to predict the fringe gradient field levels for a non-shielded axial disc coil and for a self-shielded transverse disc coil in the vicinity of the magnet poles. The numerical results indicate that for the self-shielded design the gradient fringe field is 1000 times smaller than the corresponding fringe field for the non-shielded disc case. Also no significant spatial dependence was noticed for the shielded coil’s fringe field. |
---|---|
ISSN: | 0730-725X 1873-5894 |
DOI: | 10.1016/S0730-725X(00)00130-2 |