Loading…
Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model
This in vitro biomechanical study was undertaken to quantify the multidirectional intervertebral kinematics following total disc replacement arthroplasty compared to conventional stabilization techniques. Using an in vitro human cadaveric model, the primary objective was to compare the multidirectio...
Saved in:
Published in: | Spine (Philadelphia, Pa. 1976) Pa. 1976), 2003-10, Vol.28 (20), p.S110-S117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This in vitro biomechanical study was undertaken to quantify the multidirectional intervertebral kinematics following total disc replacement arthroplasty compared to conventional stabilization techniques.
Using an in vitro human cadaveric model, the primary objective was to compare the multidirectional flexibility properties and map the center of intervertebral rotation of total disc arthroplasty versus conventional threaded fusion cages and cages augmented with transpedicular fixation for single-level spinal instrumentation.
The utilization of motion-preserving implants versus instrumentation systems, which stabilize the operative segments, necessitates improved understanding of their comparative biomechanical properties.
A total of eight human cadaveric lumbosacral spines (L2 to sacrum) were utilized in this investigation and biomechanically evaluated under the following L4-L5 reconstruction conditions: 1) intact spine; 2) SB Charitè disc prosthesis; 3) BAK cages; and 4) BAK cages + ISOLA pedicle screw/rod fixation (anteroposterior). The superior (L3-L4) and inferior (L5-S1) intervertebral levels remained uninstrumented to quantify adjacent level properties. Multidirectional flexibility included pure, unconstrained moments (+/-8 Nm) in axial rotation, flexion-extension, and lateral bending, with quantification of the operative and adjacent level range of motion and neutral zone, which were normalized to the intact spine condition.
The SB Charitè prosthesis indicated an average percentage increase in axial rotation range of motion by 44% compared to the intact condition (P < 0.05), whereas the BAK and anteroposterior reconstructions decreased range of motion by 29% and 80%, respectively (P < 0.05). The SB Charitè was significantly different from BAK and combined anteroposterior reconstructions (P < 0.05). Flexion-extension indicated a minor increase in range of motion for the SB Charitè (3%) versus the intact disc (P > 0.05), whereas the BAK and anteroposterior stabilization groups resulted in significant decreases in range of motion (BAK = 57%, anteroposterior = 93%) (P < 0.05) when compared to the intact and SB Charitè conditions. Based on flexion-extension radiographs, the intervertebral centers of rotation were in the posterior one-third of the operative intervertebral disc only for the SB Charitè reconstruction and intact spine condition, with definitive evidence of physiologic intervertebral translation (intact 2.06 +/- 77 mm; SB III = 1.9 +/- 0.98 |
---|---|
ISSN: | 0362-2436 1528-1159 |
DOI: | 10.1097/01.brs.0000092209.27573.90 |