Loading…

Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data

The ability to confidently identify or exclude a population as the source of an individual has numerous powerful applications in molecular ecology. Several alternative assignment methods have recently been developed and are yet to be fully evaluated with empirical data. In this study we tested the e...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2001-12, Vol.10 (12), p.2867-2876
Main Authors: Eldridge, M D, Kinnear, J E, Onus, M L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to confidently identify or exclude a population as the source of an individual has numerous powerful applications in molecular ecology. Several alternative assignment methods have recently been developed and are yet to be fully evaluated with empirical data. In this study we tested the efficacy of different assignment methods by using a translocated rock-wallaby (Petrogale lateralis) population, of known provenance. Specimens from the translocated population (n = 43), its known source population (n = 30) and four other nearby populations (n = 19-32) were genotyped for 11 polymorphic microsatellite loci. The results identified Bayesian clustering, frequency and Bayesian methods as the most consistent and accurate, correctly assigning 93-100% of individuals up to a significance threshold of P = 0.01. Performance was variable among the distance-based methods, with the Cavalli-Sforza and Edwards chord distance performing best, whereas Goldstein et al.'s (deltamu)2 consistently performed poorly. Using Bayesian clustering, frequency and Bayesian methods we then attempted to determine the source of rock-wallabies which have recently recolonized an outcrop (Gardners) 8 km from the nearest rock-wallaby population. Results indicate that the population at Gardners originated via a recent dispersal event from the eastern end of Mt. Caroline. This is only the second published record of dispersal by rock-wallabies between habitat patches and is the longest movement recorded to date. Molecular techniques and methods of analysis are now available to allow detailed studies of dispersal in rock-wallabies and should also be possible for many other taxa.
ISSN:0962-1083
DOI:10.1046/j.0962-1083.2001.01403.x