Loading…
Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence
This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy...
Saved in:
Published in: | Biological cybernetics 2003-10, Vol.89 (4), p.303-312 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-74e865d66344a16c1fa2354f7cf7df430ba68d788ce9fa5bb256e3187fe8d9a63 |
---|---|
cites | |
container_end_page | 312 |
container_issue | 4 |
container_start_page | 303 |
container_title | Biological cybernetics |
container_volume | 89 |
creator | Möller, Eva Schack, Bärbel Vath, Nuria Witte, Herbert |
description | This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy of the parameter estimation. As a consequence, the estimation sequences come close to the true model parameters with a fast adaptation speed. This advantage also holds true of spectral quantities (e.g., the momentary coherence), which are derived from the model parameters. Thus the extension of the ARMA fitting from one to multiple trajectories allows the investigation of nonstationary biological signals with an increased time resolution. The applicability of the algorithm is demonstrated for event-related EEG coherence analysis of the Sternberg task. The changing interaction between posterior association cortex and anterior brain area was shown for verbal and nonverbal stimuli by means of the time-variant theta coherence. |
doi_str_mv | 10.1007/s00422-003-0394-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71339038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71339038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-74e865d66344a16c1fa2354f7cf7df430ba68d788ce9fa5bb256e3187fe8d9a63</originalsourceid><addsrcrecordid>eNpdkUtr5DAQhEXIkkwePyCXIHLIzbstS5bs4xDygiwLy-YsNHIro8G2JpIM2X8fDTMQCDQ0NF8VRRchVwx-MgD1KwGIuq4AeAW8E9XHEVkwwctFKTgmC-ACKlYDnJKzlDYA0NVNd0JOmZDQtJ1YEHzwOfvpjQZHw4R0-ff3ko6hx4HmQMd5yH47IM3RmyFRP9mIJmGieV2OfkQaMYVhzj5MOws_pWymMhjmRG1YY8TJ4gX54YoeLw_7nLw-3P-7e6pe_jw-3y1fKstrkSslsJVNLyUXwjBpmTM1b4RT1qneCQ4rI9teta3FzplmtaobiZy1ymHbd0byc3K7993G8D5jynr0yeIw7ANpxTjvgLcFvPkGbsIcp5JNy8KAAq4KxPaQjSGliE5vox9N_K8Z6F0Bel-ALgXoXQH6o2iuD8bzasT-S3H4OP8EtBWBzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613307037</pqid></control><display><type>article</type><title>Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence</title><source>Springer Link</source><creator>Möller, Eva ; Schack, Bärbel ; Vath, Nuria ; Witte, Herbert</creator><creatorcontrib>Möller, Eva ; Schack, Bärbel ; Vath, Nuria ; Witte, Herbert</creatorcontrib><description>This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy of the parameter estimation. As a consequence, the estimation sequences come close to the true model parameters with a fast adaptation speed. This advantage also holds true of spectral quantities (e.g., the momentary coherence), which are derived from the model parameters. Thus the extension of the ARMA fitting from one to multiple trajectories allows the investigation of nonstationary biological signals with an increased time resolution. The applicability of the algorithm is demonstrated for event-related EEG coherence analysis of the Sternberg task. The changing interaction between posterior association cortex and anterior brain area was shown for verbal and nonverbal stimuli by means of the time-variant theta coherence.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-003-0394-x</identifier><identifier>PMID: 14605894</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Algorithms ; Electroencephalography - methods ; Humans ; Least-Squares Analysis ; Memory - physiology ; Models, Neurological ; Parameter estimation ; Studies ; Time Factors</subject><ispartof>Biological cybernetics, 2003-10, Vol.89 (4), p.303-312</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-74e865d66344a16c1fa2354f7cf7df430ba68d788ce9fa5bb256e3187fe8d9a63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14605894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Möller, Eva</creatorcontrib><creatorcontrib>Schack, Bärbel</creatorcontrib><creatorcontrib>Vath, Nuria</creatorcontrib><creatorcontrib>Witte, Herbert</creatorcontrib><title>Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy of the parameter estimation. As a consequence, the estimation sequences come close to the true model parameters with a fast adaptation speed. This advantage also holds true of spectral quantities (e.g., the momentary coherence), which are derived from the model parameters. Thus the extension of the ARMA fitting from one to multiple trajectories allows the investigation of nonstationary biological signals with an increased time resolution. The applicability of the algorithm is demonstrated for event-related EEG coherence analysis of the Sternberg task. The changing interaction between posterior association cortex and anterior brain area was shown for verbal and nonverbal stimuli by means of the time-variant theta coherence.</description><subject>Algorithms</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>Least-Squares Analysis</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Parameter estimation</subject><subject>Studies</subject><subject>Time Factors</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr5DAQhEXIkkwePyCXIHLIzbstS5bs4xDygiwLy-YsNHIro8G2JpIM2X8fDTMQCDQ0NF8VRRchVwx-MgD1KwGIuq4AeAW8E9XHEVkwwctFKTgmC-ACKlYDnJKzlDYA0NVNd0JOmZDQtJ1YEHzwOfvpjQZHw4R0-ff3ko6hx4HmQMd5yH47IM3RmyFRP9mIJmGieV2OfkQaMYVhzj5MOws_pWymMhjmRG1YY8TJ4gX54YoeLw_7nLw-3P-7e6pe_jw-3y1fKstrkSslsJVNLyUXwjBpmTM1b4RT1qneCQ4rI9teta3FzplmtaobiZy1ymHbd0byc3K7993G8D5jynr0yeIw7ANpxTjvgLcFvPkGbsIcp5JNy8KAAq4KxPaQjSGliE5vox9N_K8Z6F0Bel-ALgXoXQH6o2iuD8bzasT-S3H4OP8EtBWBzA</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Möller, Eva</creator><creator>Schack, Bärbel</creator><creator>Vath, Nuria</creator><creator>Witte, Herbert</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200310</creationdate><title>Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence</title><author>Möller, Eva ; Schack, Bärbel ; Vath, Nuria ; Witte, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-74e865d66344a16c1fa2354f7cf7df430ba68d788ce9fa5bb256e3187fe8d9a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>Least-Squares Analysis</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Parameter estimation</topic><topic>Studies</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, Eva</creatorcontrib><creatorcontrib>Schack, Bärbel</creatorcontrib><creatorcontrib>Vath, Nuria</creatorcontrib><creatorcontrib>Witte, Herbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, Eva</au><au>Schack, Bärbel</au><au>Vath, Nuria</au><au>Witte, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence</atitle><jtitle>Biological cybernetics</jtitle><addtitle>Biol Cybern</addtitle><date>2003-10</date><risdate>2003</risdate><volume>89</volume><issue>4</issue><spage>303</spage><epage>312</epage><pages>303-312</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy of the parameter estimation. As a consequence, the estimation sequences come close to the true model parameters with a fast adaptation speed. This advantage also holds true of spectral quantities (e.g., the momentary coherence), which are derived from the model parameters. Thus the extension of the ARMA fitting from one to multiple trajectories allows the investigation of nonstationary biological signals with an increased time resolution. The applicability of the algorithm is demonstrated for event-related EEG coherence analysis of the Sternberg task. The changing interaction between posterior association cortex and anterior brain area was shown for verbal and nonverbal stimuli by means of the time-variant theta coherence.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>14605894</pmid><doi>10.1007/s00422-003-0394-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2003-10, Vol.89 (4), p.303-312 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_71339038 |
source | Springer Link |
subjects | Algorithms Electroencephalography - methods Humans Least-Squares Analysis Memory - physiology Models, Neurological Parameter estimation Studies Time Factors |
title | Fitting of one ARMA model to multiple trials increases the time resolution of instantaneous coherence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitting%20of%20one%20ARMA%20model%20to%20multiple%20trials%20increases%20the%20time%20resolution%20of%20instantaneous%20coherence&rft.jtitle=Biological%20cybernetics&rft.au=M%C3%B6ller,%20Eva&rft.date=2003-10&rft.volume=89&rft.issue=4&rft.spage=303&rft.epage=312&rft.pages=303-312&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-003-0394-x&rft_dat=%3Cproquest_cross%3E71339038%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-74e865d66344a16c1fa2354f7cf7df430ba68d788ce9fa5bb256e3187fe8d9a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=613307037&rft_id=info:pmid/14605894&rfr_iscdi=true |