Loading…

Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness

The development of flexible polyurethane heart valves has been hindered by material degradation in vivo. Low modulus polyurethane leaflets are regarded as desirable to achieve good hydrodynamic function. However, low modulus materials may suffer high strain accumulation, hence poor durability. Highe...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2002, Vol.23 (1), p.45-50
Main Authors: Bernacca, Gillian M., O’Connor, Bernard, Williams, David F, Wheatley, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3
cites cdi_FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3
container_end_page 50
container_issue 1
container_start_page 45
container_title Biomaterials
container_volume 23
creator Bernacca, Gillian M.
O’Connor, Bernard
Williams, David F
Wheatley, David J.
description The development of flexible polyurethane heart valves has been hindered by material degradation in vivo. Low modulus polyurethane leaflets are regarded as desirable to achieve good hydrodynamic function. However, low modulus materials may suffer high strain accumulation, hence poor durability. Higher modulus materials may improve durability, but may have poor hydrodynamic function. This study examines the hydrodynamic behaviour of biostable polyurethane valves, varying Young's modulus from 5 to 63.6 MPa and mean leaflet thickness from 48–238 μm. Parameters studied included mean pressure gradient, energy losses and regurgitation over 5 equivalent cardiac outputs (3.6, 4.9, 6.4, 8.0 and 9.6 l min −1). At low cardiac output, modulus was not significantly correlated with any parameter of valve opening. At 9.6 l min −1, modulus significantly influenced mean pressure gradient ( p=0.033). Mean leaflet thickness significantly correlated with mean pressure gradient and energy losses during forward flow at all cardiac outputs ( p
doi_str_mv 10.1016/S0142-9612(01)00077-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71343052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961201000771</els_id><sourcerecordid>71343052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1ERYfCTwB5xWMR8PUjcdggVEFbqRILYMHKcuwbxpA4g-2MNP-epDOiy66urvSd-ziHkBfA3gGD-v03BpJXbQ38DYO3jLGmqeAR2YBudKVaph6TzX_knDzN-Tdbeib5E3IO0NRcK7Eh6frg0-QP0Y7B0X6OroQp0qmnu2k4zAnL1kakuzTlssWyMFu0qdC9HfaYP9AQ-2HG6DCvmp_THH-9znSc_DzMmdro6YC2H7DQsg3uT8Scn5Gz3g4Zn5_qBfnx5fP3y-vq9uvVzeWn28pJKUvlmHOaea6kbjpUsDzmFJesFay2qrUtCGEV6E4DcClF16q-1V5r1F0rAMUFeXWcuxz_d8ZczBiyw2FYHprmbBoQUjDFHwR5A6qWGhZQHUG32JET9maXwmjTwQAzayrmLhWzWm4YmLtUzKp7eVowdyP6e9UphgX4eARw8WMfMJnswuqqDwldMX4KD6z4B0nBnPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27156481</pqid></control><display><type>article</type><title>Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Bernacca, Gillian M. ; O’Connor, Bernard ; Williams, David F ; Wheatley, David J.</creator><creatorcontrib>Bernacca, Gillian M. ; O’Connor, Bernard ; Williams, David F ; Wheatley, David J.</creatorcontrib><description>The development of flexible polyurethane heart valves has been hindered by material degradation in vivo. Low modulus polyurethane leaflets are regarded as desirable to achieve good hydrodynamic function. However, low modulus materials may suffer high strain accumulation, hence poor durability. Higher modulus materials may improve durability, but may have poor hydrodynamic function. This study examines the hydrodynamic behaviour of biostable polyurethane valves, varying Young's modulus from 5 to 63.6 MPa and mean leaflet thickness from 48–238 μm. Parameters studied included mean pressure gradient, energy losses and regurgitation over 5 equivalent cardiac outputs (3.6, 4.9, 6.4, 8.0 and 9.6 l min −1). At low cardiac output, modulus was not significantly correlated with any parameter of valve opening. At 9.6 l min −1, modulus significantly influenced mean pressure gradient ( p=0.033). Mean leaflet thickness significantly correlated with mean pressure gradient and energy losses during forward flow at all cardiac outputs ( p&lt;0.001). This study demonstrates that, over a wide range of moduli, valve hydrodynamic function is not affected significantly by the material modulus. Leaflet thickness is a highly significant factor. Higher modulus elastomers in a range up to 32.5 MPa may be useful in prosthetic heart valve leaflet manufacture, retaining good hydrodynamic function while potentially extending the lifetime of the valve.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(01)00077-1</identifier><identifier>PMID: 11762853</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Heart Valve Prosthesis ; Hydrodynamic function ; Leaflet thickness ; Modulus ; Polyurethane ; Polyurethanes</subject><ispartof>Biomaterials, 2002, Vol.23 (1), p.45-50</ispartof><rights>2001 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3</citedby><cites>FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11762853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bernacca, Gillian M.</creatorcontrib><creatorcontrib>O’Connor, Bernard</creatorcontrib><creatorcontrib>Williams, David F</creatorcontrib><creatorcontrib>Wheatley, David J.</creatorcontrib><title>Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The development of flexible polyurethane heart valves has been hindered by material degradation in vivo. Low modulus polyurethane leaflets are regarded as desirable to achieve good hydrodynamic function. However, low modulus materials may suffer high strain accumulation, hence poor durability. Higher modulus materials may improve durability, but may have poor hydrodynamic function. This study examines the hydrodynamic behaviour of biostable polyurethane valves, varying Young's modulus from 5 to 63.6 MPa and mean leaflet thickness from 48–238 μm. Parameters studied included mean pressure gradient, energy losses and regurgitation over 5 equivalent cardiac outputs (3.6, 4.9, 6.4, 8.0 and 9.6 l min −1). At low cardiac output, modulus was not significantly correlated with any parameter of valve opening. At 9.6 l min −1, modulus significantly influenced mean pressure gradient ( p=0.033). Mean leaflet thickness significantly correlated with mean pressure gradient and energy losses during forward flow at all cardiac outputs ( p&lt;0.001). This study demonstrates that, over a wide range of moduli, valve hydrodynamic function is not affected significantly by the material modulus. Leaflet thickness is a highly significant factor. Higher modulus elastomers in a range up to 32.5 MPa may be useful in prosthetic heart valve leaflet manufacture, retaining good hydrodynamic function while potentially extending the lifetime of the valve.</description><subject>Heart Valve Prosthesis</subject><subject>Hydrodynamic function</subject><subject>Leaflet thickness</subject><subject>Modulus</subject><subject>Polyurethane</subject><subject>Polyurethanes</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS1ERYfCTwB5xWMR8PUjcdggVEFbqRILYMHKcuwbxpA4g-2MNP-epDOiy66urvSd-ziHkBfA3gGD-v03BpJXbQ38DYO3jLGmqeAR2YBudKVaph6TzX_knDzN-Tdbeib5E3IO0NRcK7Eh6frg0-QP0Y7B0X6OroQp0qmnu2k4zAnL1kakuzTlssWyMFu0qdC9HfaYP9AQ-2HG6DCvmp_THH-9znSc_DzMmdro6YC2H7DQsg3uT8Scn5Gz3g4Zn5_qBfnx5fP3y-vq9uvVzeWn28pJKUvlmHOaea6kbjpUsDzmFJesFay2qrUtCGEV6E4DcClF16q-1V5r1F0rAMUFeXWcuxz_d8ZczBiyw2FYHprmbBoQUjDFHwR5A6qWGhZQHUG32JET9maXwmjTwQAzayrmLhWzWm4YmLtUzKp7eVowdyP6e9UphgX4eARw8WMfMJnswuqqDwldMX4KD6z4B0nBnPA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Bernacca, Gillian M.</creator><creator>O’Connor, Bernard</creator><creator>Williams, David F</creator><creator>Wheatley, David J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>2002</creationdate><title>Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness</title><author>Bernacca, Gillian M. ; O’Connor, Bernard ; Williams, David F ; Wheatley, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Heart Valve Prosthesis</topic><topic>Hydrodynamic function</topic><topic>Leaflet thickness</topic><topic>Modulus</topic><topic>Polyurethane</topic><topic>Polyurethanes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bernacca, Gillian M.</creatorcontrib><creatorcontrib>O’Connor, Bernard</creatorcontrib><creatorcontrib>Williams, David F</creatorcontrib><creatorcontrib>Wheatley, David J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernacca, Gillian M.</au><au>O’Connor, Bernard</au><au>Williams, David F</au><au>Wheatley, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2002</date><risdate>2002</risdate><volume>23</volume><issue>1</issue><spage>45</spage><epage>50</epage><pages>45-50</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>The development of flexible polyurethane heart valves has been hindered by material degradation in vivo. Low modulus polyurethane leaflets are regarded as desirable to achieve good hydrodynamic function. However, low modulus materials may suffer high strain accumulation, hence poor durability. Higher modulus materials may improve durability, but may have poor hydrodynamic function. This study examines the hydrodynamic behaviour of biostable polyurethane valves, varying Young's modulus from 5 to 63.6 MPa and mean leaflet thickness from 48–238 μm. Parameters studied included mean pressure gradient, energy losses and regurgitation over 5 equivalent cardiac outputs (3.6, 4.9, 6.4, 8.0 and 9.6 l min −1). At low cardiac output, modulus was not significantly correlated with any parameter of valve opening. At 9.6 l min −1, modulus significantly influenced mean pressure gradient ( p=0.033). Mean leaflet thickness significantly correlated with mean pressure gradient and energy losses during forward flow at all cardiac outputs ( p&lt;0.001). This study demonstrates that, over a wide range of moduli, valve hydrodynamic function is not affected significantly by the material modulus. Leaflet thickness is a highly significant factor. Higher modulus elastomers in a range up to 32.5 MPa may be useful in prosthetic heart valve leaflet manufacture, retaining good hydrodynamic function while potentially extending the lifetime of the valve.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>11762853</pmid><doi>10.1016/S0142-9612(01)00077-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2002, Vol.23 (1), p.45-50
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_71343052
source ScienceDirect Freedom Collection 2022-2024
subjects Heart Valve Prosthesis
Hydrodynamic function
Leaflet thickness
Modulus
Polyurethane
Polyurethanes
title Hydrodynamic function of polyurethane prosthetic heart valves: influences of Young's modulus and leaflet thickness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20function%20of%20polyurethane%20prosthetic%20heart%20valves:%20influences%20of%20Young's%20modulus%20and%20leaflet%20thickness&rft.jtitle=Biomaterials&rft.au=Bernacca,%20Gillian%20M.&rft.date=2002&rft.volume=23&rft.issue=1&rft.spage=45&rft.epage=50&rft.pages=45-50&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(01)00077-1&rft_dat=%3Cproquest_cross%3E71343052%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-c0cc80d25487be51187c52409306a59a9133a518b8112443b95f98d88e8b931e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27156481&rft_id=info:pmid/11762853&rfr_iscdi=true