Loading…
Microfluidic device for capillary electrochromatography-mass spectrometry
A novel microfabricated device that integrates a monolithic polymeric separation channel, an injector, and an interface for electrospray ionization‐mass spectrometry detection (ESI‐MS) was devised. Microfluidic propulsion was accomplished using electrically driven fluid flows. The methacrylate‐based...
Saved in:
Published in: | Electrophoresis 2003-11, Vol.24 (21), p.3655-3662 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel microfabricated device that integrates a monolithic polymeric separation channel, an injector, and an interface for electrospray ionization‐mass spectrometry detection (ESI‐MS) was devised. Microfluidic propulsion was accomplished using electrically driven fluid flows. The methacrylate‐based monolithic separation medium was prepared by photopolymerization and had a positively derivatized surface to ensure electroosmotic flow (EOF) generation for separation of analytes in a capillary electrochromatography (CEC) format. The injector operation was optimized to perform under conditions of nonuniform EOF within the microfluidic channels. The ESI interface allowed hours of stable operation at the flow rates generated by the monolithic column. The dimensions of one processing line were sufficiently small to enable the integration of 4–8 channel multiplexed structures on a single substrate. Standard protein digests were utilized to evaluate the performance of this microfluidic chip. Low‐ or sub‐fmol amounts were injected and detected with this arrangement. |
---|---|
ISSN: | 0173-0835 1522-2683 |
DOI: | 10.1002/elps.200305609 |