Loading…

Molecular Dissection of Actopaxin-Integrin-linked Kinase-Paxillin Interactions and Their Role in Subcellular Localization

Paxillin is a focal adhesion adapter protein involved in integrin signaling. We have recently reported that the paxillin LD1 motif acts as a binding interface for both the actin-binding protein actopaxin and the serine/threonine integrin-linked kinase (ILK). In this report we demonstrate the direct...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2002-01, Vol.277 (2), p.1568-1575
Main Authors: Nikolopoulos, Sotiris N, Turner, Christopher E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Paxillin is a focal adhesion adapter protein involved in integrin signaling. We have recently reported that the paxillin LD1 motif acts as a binding interface for both the actin-binding protein actopaxin and the serine/threonine integrin-linked kinase (ILK). In this report we demonstrate the direct association between actopaxin and ILK and dissect the role of the respective interactions in their subcellular localization. Co-immunoprecipitation experiments were employed to map the binding sites on ILK and actopaxin. ILK binds to the CH2 domain of actopaxin. However, an actopaxin CH2 domain mutant defective for paxillin binding (paxillin binding subdomain mutant) retains the capacity to bind ILK, indicating that paxillin and ILK binding sites on actopaxin are distinct. Actopaxin binds to the C terminus of ILK. Despite the direct binding between actopaxin and ILK, mutation analysis confirmed a primary role for paxillin in their localization to focal adhesions. Interestingly, an ILK mutant (E359K) that was previously reported to act as dominant negative for ILK function was unable to bind actopaxin or paxillin and failed to localize to focal adhesions. This mutant also exhibited in vitro kinase activity comparable with wild-type ILK. Taken together, these data suggest that normal ILK signaling is dependent on efficient localization involving multiple protein interactions.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M108612200