Loading…
Production of functional platelets by differentiated embryonic stem (ES) cells in vitro
Megakaryocytes and functional platelets were generated in vitro from murine embryonic stem (ES) cells with the use of a coculture system with stromal cells. Two morphologically distinctive megakaryocytes were observed sequentially. Small megakaryocytes rapidly produced proplatelets on day 8 of the d...
Saved in:
Published in: | Blood 2003-12, Vol.102 (12), p.4044-4051 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Megakaryocytes and functional platelets were generated in vitro from murine embryonic stem (ES) cells with the use of a coculture system with stromal cells. Two morphologically distinctive megakaryocytes were observed sequentially. Small megakaryocytes rapidly produced proplatelets on day 8 of the differentiation, and large hyperploid megakaryocytes developed after day 12, suggesting primitive and definitive megakaryopoiesis. Two waves of platelet production were consistently observed in the culture medium. A larger number of platelets was produced in the second wave; 104 ES cells produced up to 108 platelets. By transmission electron microscopy, platelets from the first wave were relatively rounder with a limited number of granules, but platelets from the second wave were discoid shaped with well-developed granules that were indistinguishable from peripheral blood platelets. ES-derived platelets were functional since they bound fibrinogen, formed aggregates, expressed P-selectin upon stimulation, and fully spread on immobilized fibrinogen. These results show the potential utility of ES-derived platelets for clinical applications. Furthermore, production of gene-transferred platelets was achieved by differentiating ES cells that were transfected with genes of interest. Overexpression of the cytoplasmic domain of integrin β3 in the ES-derived platelets prevented the activation of αIIbβ3, demonstrating that this system will facilitate functional platelet studies. (Blood. 2003;102:4044-4051) |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2003-06-1773 |