Loading…

Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior

Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The hig...

Full description

Saved in:
Bibliographic Details
Published in:Trends in neurosciences (Regular ed.) 2003-12, Vol.26 (12), p.688-695
Main Authors: Heckman, C.J., Lee, Robert H., Brownstone, Robert M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223
cites cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223
container_end_page 695
container_issue 12
container_start_page 688
container_title Trends in neurosciences (Regular ed.)
container_volume 26
creator Heckman, C.J.
Lee, Robert H.
Brownstone, Robert M.
description Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.
doi_str_mv 10.1016/j.tins.2003.10.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71387446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223603003382</els_id><sourcerecordid>566296301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYNY7LX6B1xIcOFubvMmmQ_BjRS1QsFNBXchH-_YXGaSa5Ipvf--md4LggtdBQ7POeS8h5A3wLbAoLvcbYsPecsZE1XYMsafkQ0M_dAAG34-J5sKdQ3nojsnL3PeMQZyAPmCnIPsuBxauSHq-rDHhA_WF20mpA6DS75gpj7QOZYYcEkxZKqDo-UOfaJPyhzdMukS04HaGEqKE3VL8uHXkylRg3f63sf0ipyNesr4-vRekB9fPt9eXTc3379-u_p001gJrDTQOnR939YvDpIxI8CAsa0ZmbVuHK1h0JqOa200x9pCOKGZFFpoCU7Xihfk_TF3n-LvBXNRs88Wp0kHjEtWPYihl7L7LwgfOB-gExV89xe4i0sKtYTi9ciiY-0K8SNkU8w54aj2yc86HRQwtY6kdmodSa0jrVodqZrenpIXM6P7YzmtUoGPRwDrxe49JpWtx2DR-YS2KBf9v_IfAYpHpP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218736053</pqid></control><display><type>article</type><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><source>ScienceDirect Freedom Collection</source><creator>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</creator><creatorcontrib>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</creatorcontrib><description>Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2003.10.002</identifier><identifier>PMID: 14624854</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Dendrites - physiology ; Humans ; Motor ability ; Motor Activity - physiology ; Motor Neurons - cytology ; Motor Neurons - physiology ; Neurology ; Neurons ; Neurotransmitter Agents - physiology</subject><ispartof>Trends in neurosciences (Regular ed.), 2003-12, Vol.26 (12), p.688-695</ispartof><rights>2003 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</citedby><cites>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14624854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Lee, Robert H.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</description><subject>Animals</subject><subject>Dendrites - physiology</subject><subject>Humans</subject><subject>Motor ability</subject><subject>Motor Activity - physiology</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - physiology</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEYhYNY7LX6B1xIcOFubvMmmQ_BjRS1QsFNBXchH-_YXGaSa5Ipvf--md4LggtdBQ7POeS8h5A3wLbAoLvcbYsPecsZE1XYMsafkQ0M_dAAG34-J5sKdQ3nojsnL3PeMQZyAPmCnIPsuBxauSHq-rDHhA_WF20mpA6DS75gpj7QOZYYcEkxZKqDo-UOfaJPyhzdMukS04HaGEqKE3VL8uHXkylRg3f63sf0ipyNesr4-vRekB9fPt9eXTc3379-u_p001gJrDTQOnR939YvDpIxI8CAsa0ZmbVuHK1h0JqOa200x9pCOKGZFFpoCU7Xihfk_TF3n-LvBXNRs88Wp0kHjEtWPYihl7L7LwgfOB-gExV89xe4i0sKtYTi9ciiY-0K8SNkU8w54aj2yc86HRQwtY6kdmodSa0jrVodqZrenpIXM6P7YzmtUoGPRwDrxe49JpWtx2DR-YS2KBf9v_IfAYpHpP0</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Heckman, C.J.</creator><creator>Lee, Robert H.</creator><creator>Brownstone, Robert M.</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><author>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Dendrites - physiology</topic><topic>Humans</topic><topic>Motor ability</topic><topic>Motor Activity - physiology</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Lee, Robert H.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckman, C.J.</au><au>Lee, Robert H.</au><au>Brownstone, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>26</volume><issue>12</issue><spage>688</spage><epage>695</epage><pages>688-695</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14624854</pmid><doi>10.1016/j.tins.2003.10.002</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-2236
ispartof Trends in neurosciences (Regular ed.), 2003-12, Vol.26 (12), p.688-695
issn 0166-2236
1878-108X
language eng
recordid cdi_proquest_miscellaneous_71387446
source ScienceDirect Freedom Collection
subjects Animals
Dendrites - physiology
Humans
Motor ability
Motor Activity - physiology
Motor Neurons - cytology
Motor Neurons - physiology
Neurology
Neurons
Neurotransmitter Agents - physiology
title Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperexcitable%20dendrites%20in%20motoneurons%20and%20their%20neuromodulatory%20control%20during%20motor%20behavior&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Heckman,%20C.J.&rft.date=2003-12-01&rft.volume=26&rft.issue=12&rft.spage=688&rft.epage=695&rft.pages=688-695&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2003.10.002&rft_dat=%3Cproquest_cross%3E566296301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218736053&rft_id=info:pmid/14624854&rfr_iscdi=true