Loading…
Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior
Dendrites contain voltage-sensitive conductances that, in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The hig...
Saved in:
Published in: | Trends in neurosciences (Regular ed.) 2003-12, Vol.26 (12), p.688-695 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223 |
container_end_page | 695 |
container_issue | 12 |
container_start_page | 688 |
container_title | Trends in neurosciences (Regular ed.) |
container_volume | 26 |
creator | Heckman, C.J. Lee, Robert H. Brownstone, Robert M. |
description | Dendrites contain voltage-sensitive conductances that,
in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels. |
doi_str_mv | 10.1016/j.tins.2003.10.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71387446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166223603003382</els_id><sourcerecordid>566296301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</originalsourceid><addsrcrecordid>eNqFkU1rFTEYhYNY7LX6B1xIcOFubvMmmQ_BjRS1QsFNBXchH-_YXGaSa5Ipvf--md4LggtdBQ7POeS8h5A3wLbAoLvcbYsPecsZE1XYMsafkQ0M_dAAG34-J5sKdQ3nojsnL3PeMQZyAPmCnIPsuBxauSHq-rDHhA_WF20mpA6DS75gpj7QOZYYcEkxZKqDo-UOfaJPyhzdMukS04HaGEqKE3VL8uHXkylRg3f63sf0ipyNesr4-vRekB9fPt9eXTc3379-u_p001gJrDTQOnR939YvDpIxI8CAsa0ZmbVuHK1h0JqOa200x9pCOKGZFFpoCU7Xihfk_TF3n-LvBXNRs88Wp0kHjEtWPYihl7L7LwgfOB-gExV89xe4i0sKtYTi9ciiY-0K8SNkU8w54aj2yc86HRQwtY6kdmodSa0jrVodqZrenpIXM6P7YzmtUoGPRwDrxe49JpWtx2DR-YS2KBf9v_IfAYpHpP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218736053</pqid></control><display><type>article</type><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><source>ScienceDirect Freedom Collection</source><creator>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</creator><creatorcontrib>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</creatorcontrib><description>Dendrites contain voltage-sensitive conductances that,
in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</description><identifier>ISSN: 0166-2236</identifier><identifier>EISSN: 1878-108X</identifier><identifier>DOI: 10.1016/j.tins.2003.10.002</identifier><identifier>PMID: 14624854</identifier><identifier>CODEN: TNSCDR</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Dendrites - physiology ; Humans ; Motor ability ; Motor Activity - physiology ; Motor Neurons - cytology ; Motor Neurons - physiology ; Neurology ; Neurons ; Neurotransmitter Agents - physiology</subject><ispartof>Trends in neurosciences (Regular ed.), 2003-12, Vol.26 (12), p.688-695</ispartof><rights>2003 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</citedby><cites>FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14624854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Lee, Robert H.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><title>Trends in neurosciences (Regular ed.)</title><addtitle>Trends Neurosci</addtitle><description>Dendrites contain voltage-sensitive conductances that,
in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</description><subject>Animals</subject><subject>Dendrites - physiology</subject><subject>Humans</subject><subject>Motor ability</subject><subject>Motor Activity - physiology</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurotransmitter Agents - physiology</subject><issn>0166-2236</issn><issn>1878-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEYhYNY7LX6B1xIcOFubvMmmQ_BjRS1QsFNBXchH-_YXGaSa5Ipvf--md4LggtdBQ7POeS8h5A3wLbAoLvcbYsPecsZE1XYMsafkQ0M_dAAG34-J5sKdQ3nojsnL3PeMQZyAPmCnIPsuBxauSHq-rDHhA_WF20mpA6DS75gpj7QOZYYcEkxZKqDo-UOfaJPyhzdMukS04HaGEqKE3VL8uHXkylRg3f63sf0ipyNesr4-vRekB9fPt9eXTc3379-u_p001gJrDTQOnR939YvDpIxI8CAsa0ZmbVuHK1h0JqOa200x9pCOKGZFFpoCU7Xihfk_TF3n-LvBXNRs88Wp0kHjEtWPYihl7L7LwgfOB-gExV89xe4i0sKtYTi9ciiY-0K8SNkU8w54aj2yc86HRQwtY6kdmodSa0jrVodqZrenpIXM6P7YzmtUoGPRwDrxe49JpWtx2DR-YS2KBf9v_IfAYpHpP0</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Heckman, C.J.</creator><creator>Lee, Robert H.</creator><creator>Brownstone, Robert M.</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20031201</creationdate><title>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</title><author>Heckman, C.J. ; Lee, Robert H. ; Brownstone, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Dendrites - physiology</topic><topic>Humans</topic><topic>Motor ability</topic><topic>Motor Activity - physiology</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurotransmitter Agents - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckman, C.J.</creatorcontrib><creatorcontrib>Lee, Robert H.</creatorcontrib><creatorcontrib>Brownstone, Robert M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in neurosciences (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckman, C.J.</au><au>Lee, Robert H.</au><au>Brownstone, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior</atitle><jtitle>Trends in neurosciences (Regular ed.)</jtitle><addtitle>Trends Neurosci</addtitle><date>2003-12-01</date><risdate>2003</risdate><volume>26</volume><issue>12</issue><spage>688</spage><epage>695</epage><pages>688-695</pages><issn>0166-2236</issn><eissn>1878-108X</eissn><coden>TNSCDR</coden><abstract>Dendrites contain voltage-sensitive conductances that,
in vivo, can be influenced by neuromodulatory inputs. In spinal motoneurons, dendrites have voltage-activated persistent inward currents that are facilitated by neuromodulatory input from monoaminergic axons originating in the brainstem. The highest levels of monoamine input are likely to occur during ‘fight or flight’ behavioral situations. At these high levels, the persistent currents are so large that the dendrites of motoneurons become hyperexcitable, enhancing ionotropic inputs by fivefold or more and allowing the firing rates required for maximal activation of muscle fibers to be generated by surprisingly small inputs. Moderate dendritic excitability (twofold to threefold enhancement) is likely to be a standard component of many normal motor behaviors, such as locomotion. Thus, during normal motor behavior, synaptic integration might be dominated by active currents intrinsic to the dendritic tree rather than by the synaptic current entering via ionotropic channels.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>14624854</pmid><doi>10.1016/j.tins.2003.10.002</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-2236 |
ispartof | Trends in neurosciences (Regular ed.), 2003-12, Vol.26 (12), p.688-695 |
issn | 0166-2236 1878-108X |
language | eng |
recordid | cdi_proquest_miscellaneous_71387446 |
source | ScienceDirect Freedom Collection |
subjects | Animals Dendrites - physiology Humans Motor ability Motor Activity - physiology Motor Neurons - cytology Motor Neurons - physiology Neurology Neurons Neurotransmitter Agents - physiology |
title | Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperexcitable%20dendrites%20in%20motoneurons%20and%20their%20neuromodulatory%20control%20during%20motor%20behavior&rft.jtitle=Trends%20in%20neurosciences%20(Regular%20ed.)&rft.au=Heckman,%20C.J.&rft.date=2003-12-01&rft.volume=26&rft.issue=12&rft.spage=688&rft.epage=695&rft.pages=688-695&rft.issn=0166-2236&rft.eissn=1878-108X&rft.coden=TNSCDR&rft_id=info:doi/10.1016/j.tins.2003.10.002&rft_dat=%3Cproquest_cross%3E566296301%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-15ded7750018400b31b1bc5bf0ccdffcb015b62aaba2e1483d3a043a3a41da223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218736053&rft_id=info:pmid/14624854&rfr_iscdi=true |