Loading…

Activation of Caspases Is Required for Osteoblastic Differentiation

Previous studies have shown that mouse osteoblastic MC3T3-E1 cells undergo apoptosis when exposed to a mixture of proinflammatory cytokines. Bone morphogenetic protein (BMP)s are important regulators of osteoblast differentiation. Because regulation of osteoblastic differentiation is poorly understo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-11, Vol.278 (48), p.47477-47482
Main Authors: Mogi, Makio, Togari, Akifumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have shown that mouse osteoblastic MC3T3-E1 cells undergo apoptosis when exposed to a mixture of proinflammatory cytokines. Bone morphogenetic protein (BMP)s are important regulators of osteoblast differentiation. Because regulation of osteoblastic differentiation is poorly understood, we sought to determine if BMP-4-induced differentiation of osteoblastic cells depends on the activity of the key apoptotic proteases, i.e. the caspases. BMP-4 induced the growth arrest and differentiation of osteoblastic cell line MC3T3-E1, as evidenced by the appearance of osteoblastic phenotypes such as alkaline phosphatase (ALP) activation and parathyroid hormone (PTH)-dependent production of cAMP. Surprisingly, BMP-4 induced transient and potent activation of caspase-8, caspase-2, and caspase-3, in this order. However, no apoptosis or necrosis in BMP-4-treated cells could be detected by FACS using annexin-V/propodium iodine double staining. Peptide inhibition of caspase activity led to a dramatic reduction in ALP activation and PTH-induced production of cAMP in BMP-4-treated cells. Although BMP-4 treatment resulted in cell-cycle G 0 /G 1 arrest as detected by FACS cell-cycle analysis, caspase inhibitors (caspase-8, caspase-2, and caspase-3 inhibitors) could block the G 0 /G 1 arrest in MC3T3-E1 cells. Taken together, these results confirm a unique and unanticipated role for the caspase-mediated signal cascade in the differentiation of osteoblasts.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M307055200