Loading…
Normality of oligonucleotide microarray data and implications for parametric statistical analyses
Motivation: Experimental limitations have resulted in the popularity of parametric statistical tests as a method for identifying differentially regulated genes in microarray data sets. However, these tests assume that the data follow a normal distribution. To date, the assumption that replicate expr...
Saved in:
Published in: | Bioinformatics 2003-11, Vol.19 (17), p.2254-2262 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivation: Experimental limitations have resulted in the popularity of parametric statistical tests as a method for identifying differentially regulated genes in microarray data sets. However, these tests assume that the data follow a normal distribution. To date, the assumption that replicate expression values for any gene are normally distributed, has not been critically addressed for Affymetrix GeneChip data. Results: The normality of the expression values calculated using four different commercial and academic software packages was investigated using a data set consisting of the same target RNA applied to 59 human Affymetrix U95A GeneChips using a combination of statistical tests and visualization techniques. For the majority of probe sets obtained from each analysis suite, the expression data showed a good correlation with normality. The exception was a large number of low-expressed genes in the data set produced using Affymetrix Microarray Suite 5.0, which showed a striking non-normal distribution. In summary, our data provide strong support for the application of parametric tests to GeneChip data sets without the need for data transformation. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btg311 |