Loading…

Molecular Orbital Calculations of Ring Opening of the Isoelectronic Cyclopropylcarbinyl Radical, Cyclopropoxy Radical, and Cyclopropylaminium Radical Cation Series of Radical Clocks

Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calcu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2003-11, Vol.68 (24), p.9441-9452
Main Authors: Cooksy, Andrew L, King, Harry F, Richardson, William H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calculations were made for this species and related ring-opened products as a reference for 2 and 3 and their reactions. Radicals 1−3 have practical utility as “radical clocks” that can be used to time other radical reactions. Radical 3 is of further interest in photoelectron-transfer processes where the back-electron-transfer process may be suppressed by rapid ring opening. Calculations have been carried out at the UHF/6-31G*, MP4//MP2/6-31G*, DFT B3LYP/6-31G*, and CCSD(T)/cc-pVTZ//QCISD/cc-pVDZ levels. Energies are corrected to 298 K, and the barriers between species are reported in terms of Arrhenius E a and log A values along with differences in enthalpies, free energies, and entropies. The CCSD(T)-calculated energy barrier for ring opening of 1 is E a = 9.70, ΔG* = 8.49 kcal/mol, which compares favorably to the previously calculated value of E a = 9.53 kcal/mol by the G2 method, but is higher than an experimental value of 7.05 kcal/mol. Our CCSD(T)-calculated E a value is also higher by 1.8 kcal/mol than a previously reported CBS-RAD//B3LYP/6-31G* calculation. The cyclopropoxy radical has a very small barrier to ring opening (CCSD(T), E a = 0.64 kcal/mol) and should be a very sensitive time clock. Of the three series studied, the cyclopropylaminium radical cation is most complex. In agreement with experimental data, bisected cyclopropylaminium radical cation is not found, but instead a ring-opened species is found. A perpendicular cyclopropylaminium radical cation (4) was found as a transition-state structure. Rotation of the 2p orbital in 4 to the bisected array results in ring opening. The minimum onset energy of photoionization of cyclopropylamine was calculated to be 201.5 kcal/mol (CCSD(T)) compared to experimental values of between about 201 and 204 kcal/mol. Calculations were made on the closely related cyclopropylcarbinyl and bicyclobutonium cations. Stabilization of the bisected cyclopropylcarbinyl conformer relative to the perpendicular species is much greater for the cations (29.1 kcal/ mol, QCISD) compared to the radicals (3.10 kcal/mol, QCISD). A search was made for analogues to the bicyclobutonium cation in the radical series 1 and 2 and the radica
ISSN:0022-3263
1520-6904
DOI:10.1021/jo035085b