Loading…

Extraction and Analysis of Human Nuclear and Mitochondrial DNA from Electron Beam Irradiated Envelopes

The United States Postal Service is considering methods such as electron beam irradiation to neutralize biological agents sent through the mail. While this is proven to reduce/eliminate pathogenic organisms, it may also degrade human genomic DNA and therefore hinder the ability to garner forensicall...

Full description

Saved in:
Bibliographic Details
Published in:Journal of forensic sciences 2003-11, Vol.48 (6), p.1-7
Main Authors: Withrow, AG, Sikorsky, J, Upshaw Downs, JC, Fenger, T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The United States Postal Service is considering methods such as electron beam irradiation to neutralize biological agents sent through the mail. While this is proven to reduce/eliminate pathogenic organisms, it may also degrade human genomic DNA and therefore hinder the ability to garner forensically informative genetic profiles. To determine the effects of electron beam irradiation on DNA typing, 16 white, standard letter-sized envelopes were licked. Half of the envelopes served as nonirradiated controls while the other half underwent irradiation at dosages sufficient to kill anthrax spores (29.3 and 51.6 kGy). Total cellular DNA was extracted from all envelopes; nuclear short tandem repeat loci, as well as the hypervariable region I from mitochondrial DNA, were amplified by means of the polymerase chain reaction. Short tandem repeat profiles and mitochondrial DNA sequence haplotypes were acquired on an ABI Prism® 310 Genetic Analyzer platform. Analysis of data from irradiated samples revealed evidence of DNA degradation; however, the ability to construct full genetic profiles from both nuclear and mitochondrial DNA remained largely unaffected. The use of the polymerase chain reaction, coupled with florescent fragment analysis and mitochondrial DNA sequencing, should be considered to profile biological material from evidence enduring irradiation to inactivate infectious agents.
ISSN:0022-1198
1556-4029
DOI:10.1520/JFS2003109