Loading…

Remarkable Solvent-Dependent Excited-State Chirality:  A Molecular Modulator of Circularly Polarized Luminescence

The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans-(2)-2-nitro-7-(dimethylamino)-9-(2‘,3‘-dihydro-1‘H-naphtho[2,1-b]-thiopyran-1‘-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by irrad...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2003-12, Vol.125 (50), p.15659-15665
Main Authors: van Delden, Richard A, Huck, Nina P. M, Piet, Jacob J, Warman, John M, Meskers, Stefan C. J, Dekkers, Harry P. J. M, Feringa, Ben L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photochemical control of ground- and excited-state chirality of (M)-cis-(1) and (P)-trans-(2)-2-nitro-7-(dimethylamino)-9-(2‘,3‘-dihydro-1‘H-naphtho[2,1-b]-thiopyran-1‘-ylidene)-9H-thioxanthene is described. It is shown that while ground state chirality can be controlled photochemically by irradiation with light of different wavelengths, the excited state chirality can be tuned either photochemically in a similar way or by appropriate choice of solvent. In benzene solution, circularly polarized luminescence of the two isomers with opposite ground-state helicity, (M)-cis- 1 and (P)-trans-2, revealed corresponding excited states of opposite helicity. On the contrary, in n-hexane solution, circularly polarized luminescence was identical for the two forms indicating identical excited state chirality. Circularly polarized luminescence (CPL), steady-state and time-dependent fluorescence, and time-resolved microwave conductivity (TRMC) measurements in both n-hexane and benzene are reported, which provide an explanation for the remarkable solvent dependence of excited-state chirality.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja036874d