Loading…

Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment

An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress 2003, Vol.19 (6), p.1828-1836
Main Authors: Senger, Ryan S., Karim, M. Nazmul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3
cites cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3
container_end_page 1836
container_issue 6
container_start_page 1828
container_title Biotechnology progress
container_volume 19
creator Senger, Ryan S.
Karim, M. Nazmul
description An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.
doi_str_mv 10.1021/bp034109x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71437250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19224853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</originalsourceid><addsrcrecordid>eNqFkc9u00AQxi0EomnhwAugvYDEwbD_1z42UUkrRWlagjiuNusxLLV3w67dNo_St8Wpo_aEOM2M5vd9M9KXZe8I_kwwJV82W8w4weX9i2xCBMW5xIy9zCaFEjJXJSuOsuOUfmOMCyzp6-yIcCkkkWySPSyhj6bJl9DdhXiTT02CCl1U4DtXO2s6FzwKNVq7lHrI17stoFVjUut8-AkendrO3ZouRLSKoQPn97Xq7aPO-ArNm50NadeMTsN-dn6JZtA0aNY3XR8B9b6CiL79AhPRmb91Mfh2OP8me1WbJsHbQz3Jvn89W8_O88Xl_GJ2usgtF0WZ15USlVKcE1oya6SU9YZYyhlYYhhQQmWpWM0rWYhiP0hcAtswrjitNtKyk-zj6LuN4U8PqdOtS3Z40HgIfdKKcKaowP8FSUkpLwQbwE8jaGNIKUKtt9G1Ju40wXofmH4KbGDfH0z7TQvVM3lIaAA-HACTrGnqaLx16ZkTTEhWlAOHR-7ONbD790U9Xa-uH9tBko8Slzq4f5KYeKOlYkroH8u5ZldX0-l8QfU1-wtT6r0H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19224853</pqid></control><display><type>article</type><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><source>Wiley</source><creator>Senger, Ryan S. ; Karim, M. Nazmul</creator><creatorcontrib>Senger, Ryan S. ; Karim, M. Nazmul</creatorcontrib><description>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp034109x</identifier><identifier>PMID: 14656163</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Algorithms ; Ammonia - metabolism ; Animals ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Cell Culture Techniques - methods ; Cell Survival - physiology ; CHO Cells ; Cricetinae ; Cricetulus ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; Models, Biological ; Neural Networks (Computer) ; Recombinant Proteins - biosynthesis ; Reproducibility of Results ; Sensitivity and Specificity ; Shear Strength ; Stress, Mechanical ; Tissue Plasminogen Activator - analysis ; Tissue Plasminogen Activator - biosynthesis ; Tissue Plasminogen Activator - genetics</subject><ispartof>Biotechnology progress, 2003, Vol.19 (6), p.1828-1836</ispartof><rights>Copyright © 2003 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</citedby><cites>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15356389$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14656163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senger, Ryan S.</creatorcontrib><creatorcontrib>Karim, M. Nazmul</creatorcontrib><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</description><subject>Algorithms</subject><subject>Ammonia - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Survival - physiology</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Models, Biological</subject><subject>Neural Networks (Computer)</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shear Strength</subject><subject>Stress, Mechanical</subject><subject>Tissue Plasminogen Activator - analysis</subject><subject>Tissue Plasminogen Activator - biosynthesis</subject><subject>Tissue Plasminogen Activator - genetics</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u00AQxi0EomnhwAugvYDEwbD_1z42UUkrRWlagjiuNusxLLV3w67dNo_St8Wpo_aEOM2M5vd9M9KXZe8I_kwwJV82W8w4weX9i2xCBMW5xIy9zCaFEjJXJSuOsuOUfmOMCyzp6-yIcCkkkWySPSyhj6bJl9DdhXiTT02CCl1U4DtXO2s6FzwKNVq7lHrI17stoFVjUut8-AkendrO3ZouRLSKoQPn97Xq7aPO-ArNm50NadeMTsN-dn6JZtA0aNY3XR8B9b6CiL79AhPRmb91Mfh2OP8me1WbJsHbQz3Jvn89W8_O88Xl_GJ2usgtF0WZ15USlVKcE1oya6SU9YZYyhlYYhhQQmWpWM0rWYhiP0hcAtswrjitNtKyk-zj6LuN4U8PqdOtS3Z40HgIfdKKcKaowP8FSUkpLwQbwE8jaGNIKUKtt9G1Ju40wXofmH4KbGDfH0z7TQvVM3lIaAA-HACTrGnqaLx16ZkTTEhWlAOHR-7ONbD790U9Xa-uH9tBko8Slzq4f5KYeKOlYkroH8u5ZldX0-l8QfU1-wtT6r0H</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Senger, Ryan S.</creator><creator>Karim, M. Nazmul</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2003</creationdate><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><author>Senger, Ryan S. ; Karim, M. Nazmul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Ammonia - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Survival - physiology</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Models, Biological</topic><topic>Neural Networks (Computer)</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shear Strength</topic><topic>Stress, Mechanical</topic><topic>Tissue Plasminogen Activator - analysis</topic><topic>Tissue Plasminogen Activator - biosynthesis</topic><topic>Tissue Plasminogen Activator - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senger, Ryan S.</creatorcontrib><creatorcontrib>Karim, M. Nazmul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senger, Ryan S.</au><au>Karim, M. Nazmul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2003</date><risdate>2003</risdate><volume>19</volume><issue>6</issue><spage>1828</spage><epage>1836</epage><pages>1828-1836</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14656163</pmid><doi>10.1021/bp034109x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2003, Vol.19 (6), p.1828-1836
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_71437250
source Wiley
subjects Algorithms
Ammonia - metabolism
Animals
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Cell Culture Techniques - methods
Cell Survival - physiology
CHO Cells
Cricetinae
Cricetulus
Ecosystem
Fundamental and applied biological sciences. Psychology
Models, Biological
Neural Networks (Computer)
Recombinant Proteins - biosynthesis
Reproducibility of Results
Sensitivity and Specificity
Shear Strength
Stress, Mechanical
Tissue Plasminogen Activator - analysis
Tissue Plasminogen Activator - biosynthesis
Tissue Plasminogen Activator - genetics
title Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network-Based%20Identification%20of%20Tissue-Type%20Plasminogen%20Activator%20Protein%20Production%20and%20Glycosylation%20in%20CHO%20Cell%20Culture%20under%20Shear%20Environment&rft.jtitle=Biotechnology%20progress&rft.au=Senger,%20Ryan%20S.&rft.date=2003&rft.volume=19&rft.issue=6&rft.spage=1828&rft.epage=1836&rft.pages=1828-1836&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp034109x&rft_dat=%3Cproquest_cross%3E19224853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19224853&rft_id=info:pmid/14656163&rfr_iscdi=true