Loading…
Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment
An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed...
Saved in:
Published in: | Biotechnology progress 2003, Vol.19 (6), p.1828-1836 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3 |
container_end_page | 1836 |
container_issue | 6 |
container_start_page | 1828 |
container_title | Biotechnology progress |
container_volume | 19 |
creator | Senger, Ryan S. Karim, M. Nazmul |
description | An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively. |
doi_str_mv | 10.1021/bp034109x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71437250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19224853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</originalsourceid><addsrcrecordid>eNqFkc9u00AQxi0EomnhwAugvYDEwbD_1z42UUkrRWlagjiuNusxLLV3w67dNo_St8Wpo_aEOM2M5vd9M9KXZe8I_kwwJV82W8w4weX9i2xCBMW5xIy9zCaFEjJXJSuOsuOUfmOMCyzp6-yIcCkkkWySPSyhj6bJl9DdhXiTT02CCl1U4DtXO2s6FzwKNVq7lHrI17stoFVjUut8-AkendrO3ZouRLSKoQPn97Xq7aPO-ArNm50NadeMTsN-dn6JZtA0aNY3XR8B9b6CiL79AhPRmb91Mfh2OP8me1WbJsHbQz3Jvn89W8_O88Xl_GJ2usgtF0WZ15USlVKcE1oya6SU9YZYyhlYYhhQQmWpWM0rWYhiP0hcAtswrjitNtKyk-zj6LuN4U8PqdOtS3Z40HgIfdKKcKaowP8FSUkpLwQbwE8jaGNIKUKtt9G1Ju40wXofmH4KbGDfH0z7TQvVM3lIaAA-HACTrGnqaLx16ZkTTEhWlAOHR-7ONbD790U9Xa-uH9tBko8Slzq4f5KYeKOlYkroH8u5ZldX0-l8QfU1-wtT6r0H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19224853</pqid></control><display><type>article</type><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><source>Wiley</source><creator>Senger, Ryan S. ; Karim, M. Nazmul</creator><creatorcontrib>Senger, Ryan S. ; Karim, M. Nazmul</creatorcontrib><description>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1021/bp034109x</identifier><identifier>PMID: 14656163</identifier><identifier>CODEN: BIPRET</identifier><language>eng</language><publisher>USA: American Chemical Society</publisher><subject>Algorithms ; Ammonia - metabolism ; Animals ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Cell Culture Techniques - methods ; Cell Survival - physiology ; CHO Cells ; Cricetinae ; Cricetulus ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; Models, Biological ; Neural Networks (Computer) ; Recombinant Proteins - biosynthesis ; Reproducibility of Results ; Sensitivity and Specificity ; Shear Strength ; Stress, Mechanical ; Tissue Plasminogen Activator - analysis ; Tissue Plasminogen Activator - biosynthesis ; Tissue Plasminogen Activator - genetics</subject><ispartof>Biotechnology progress, 2003, Vol.19 (6), p.1828-1836</ispartof><rights>Copyright © 2003 American Institute of Chemical Engineers (AIChE)</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</citedby><cites>FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15356389$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14656163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Senger, Ryan S.</creatorcontrib><creatorcontrib>Karim, M. Nazmul</creatorcontrib><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><title>Biotechnology progress</title><addtitle>Biotechnol Progress</addtitle><description>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</description><subject>Algorithms</subject><subject>Ammonia - metabolism</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Cell Culture Techniques - methods</subject><subject>Cell Survival - physiology</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Models, Biological</subject><subject>Neural Networks (Computer)</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Shear Strength</subject><subject>Stress, Mechanical</subject><subject>Tissue Plasminogen Activator - analysis</subject><subject>Tissue Plasminogen Activator - biosynthesis</subject><subject>Tissue Plasminogen Activator - genetics</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u00AQxi0EomnhwAugvYDEwbD_1z42UUkrRWlagjiuNusxLLV3w67dNo_St8Wpo_aEOM2M5vd9M9KXZe8I_kwwJV82W8w4weX9i2xCBMW5xIy9zCaFEjJXJSuOsuOUfmOMCyzp6-yIcCkkkWySPSyhj6bJl9DdhXiTT02CCl1U4DtXO2s6FzwKNVq7lHrI17stoFVjUut8-AkendrO3ZouRLSKoQPn97Xq7aPO-ArNm50NadeMTsN-dn6JZtA0aNY3XR8B9b6CiL79AhPRmb91Mfh2OP8me1WbJsHbQz3Jvn89W8_O88Xl_GJ2usgtF0WZ15USlVKcE1oya6SU9YZYyhlYYhhQQmWpWM0rWYhiP0hcAtswrjitNtKyk-zj6LuN4U8PqdOtS3Z40HgIfdKKcKaowP8FSUkpLwQbwE8jaGNIKUKtt9G1Ju40wXofmH4KbGDfH0z7TQvVM3lIaAA-HACTrGnqaLx16ZkTTEhWlAOHR-7ONbD790U9Xa-uH9tBko8Slzq4f5KYeKOlYkroH8u5ZldX0-l8QfU1-wtT6r0H</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Senger, Ryan S.</creator><creator>Karim, M. Nazmul</creator><general>American Chemical Society</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2003</creationdate><title>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</title><author>Senger, Ryan S. ; Karim, M. Nazmul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Ammonia - metabolism</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Cell Culture Techniques - methods</topic><topic>Cell Survival - physiology</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Models, Biological</topic><topic>Neural Networks (Computer)</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Shear Strength</topic><topic>Stress, Mechanical</topic><topic>Tissue Plasminogen Activator - analysis</topic><topic>Tissue Plasminogen Activator - biosynthesis</topic><topic>Tissue Plasminogen Activator - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senger, Ryan S.</creatorcontrib><creatorcontrib>Karim, M. Nazmul</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senger, Ryan S.</au><au>Karim, M. Nazmul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Progress</addtitle><date>2003</date><risdate>2003</risdate><volume>19</volume><issue>6</issue><spage>1828</spage><epage>1836</epage><pages>1828-1836</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><coden>BIPRET</coden><abstract>An artificial neural network (ANN) modeling scheme has been constructed for the identification of both recombinant tissue‐type plasminogen activator (r‐tPA) protein production and glycosylation from Chinese hamster ovary (CHO) cell culture, cultivated in a stirred bioreactor. A series of hybrid feed‐forward backpropagation neural networks were constructed to function as a software sensor. This enabled predictions of viable cell density, r‐tPA content, and r‐tPA glycosylation. The sensor was based on an initial input vector space consisting of simple metabolite concentrations, batch cultivation time, and a description of shear stress applied to the culture. Metabolite concentrations of the culture supernatant, included in the input vector space, were obtained from a single isocratic HPLC measurement. The shear stress component of the input space enabled accurate culture state prediction over a wide range of agitation rates. Coefficient of determination (r2) values between ANN predicted and experimental measurements of 0.945, 0.943, 0.956, and 0.990 were calculated to validate individual ANN prediction accuracy for total ammonia, apparent viable cell density, total r‐tPA, and Type II glycoform concentrations, respectively.</abstract><cop>USA</cop><pub>American Chemical Society</pub><pmid>14656163</pmid><doi>10.1021/bp034109x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2003, Vol.19 (6), p.1828-1836 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_71437250 |
source | Wiley |
subjects | Algorithms Ammonia - metabolism Animals Biological and medical sciences Bioreactors - microbiology Biotechnology Cell Culture Techniques - methods Cell Survival - physiology CHO Cells Cricetinae Cricetulus Ecosystem Fundamental and applied biological sciences. Psychology Models, Biological Neural Networks (Computer) Recombinant Proteins - biosynthesis Reproducibility of Results Sensitivity and Specificity Shear Strength Stress, Mechanical Tissue Plasminogen Activator - analysis Tissue Plasminogen Activator - biosynthesis Tissue Plasminogen Activator - genetics |
title | Neural-Network-Based Identification of Tissue-Type Plasminogen Activator Protein Production and Glycosylation in CHO Cell Culture under Shear Environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-Network-Based%20Identification%20of%20Tissue-Type%20Plasminogen%20Activator%20Protein%20Production%20and%20Glycosylation%20in%20CHO%20Cell%20Culture%20under%20Shear%20Environment&rft.jtitle=Biotechnology%20progress&rft.au=Senger,%20Ryan%20S.&rft.date=2003&rft.volume=19&rft.issue=6&rft.spage=1828&rft.epage=1836&rft.pages=1828-1836&rft.issn=8756-7938&rft.eissn=1520-6033&rft.coden=BIPRET&rft_id=info:doi/10.1021/bp034109x&rft_dat=%3Cproquest_cross%3E19224853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4589-fd75d77441293ca666fb1c243ec1a3e2126973f4d68581269609e3b34742db6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19224853&rft_id=info:pmid/14656163&rfr_iscdi=true |