Loading…
Myostatin Knockout in Mice Increases Myogenesis and Decreases Adipogenesis
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male...
Saved in:
Published in: | Biochemical and biophysical research communications 2002-03, Vol.291 (3), p.701-706 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1006/bbrc.2002.6500 |