Loading…
Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems
A novel methodology for designing microfluidic channels for low-dispersion, electrokinetic flows is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed using common drafting software and a hand calculator. Flo...
Saved in:
Published in: | Analytical chemistry (Washington) 2003-09, Vol.75 (18), p.4747-4755 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333 |
---|---|
cites | cdi_FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333 |
container_end_page | 4755 |
container_issue | 18 |
container_start_page | 4747 |
container_title | Analytical chemistry (Washington) |
container_volume | 75 |
creator | Fiechtner, Gregory J Cummings, Eric B |
description | A novel methodology for designing microfluidic channels for low-dispersion, electrokinetic flows is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeabilitya quantity with dimensions of length that we introduce to derive the governing equations. Two-interface systems are used to eliminate hydrodynamic rotation of bands injected into channels. Regions bounded by interfaces form faceted flow “prisms” with uniform velocity fields that can be combined with other prisms to obtain a wide range of turning angles and expansion ratios. Lengths of faceted prisms can be varied arbitrarily, simplifying chip layout and allowing the ability to reduce unwanted effects such as transverse diffusion and Joule heating for a given faceted prism. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation. |
doi_str_mv | 10.1021/ac0207776 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71468454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>484671531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333</originalsourceid><addsrcrecordid>eNplkF1rFDEUhoModq1e-AckCAq9GD35mCR7KdtuFVYs7epFb8KZTEbTzk7WZIbaf2_KLl3Qq8DJw8v7PoS8ZvCBAWcf0QEHrbV6Qmas5lApY_hTMgMAUXENcERe5HwDwBgw9ZwcMam0lDXMyPUSnR99S099Dj8HGju6-IXD4PtMu5joKt5VpyFvfcohDvSs925M8TYMfgyOLvt4l2kY6NfgUuz6KbTlenWfR7_JL8mzDvvsX-3fY_J9ebZefK5W386_LD6tKpSgxopDUwspu2betRznWhsxx9r4WgtEwXijFJqGadN4jQa5cdgpRJCtFsILIY7J-13uNsXfk8-j3YTsfN_j4OOUrS5rjaxlAd_-A97EKQ2lm-UlX6ta6AKd7KAyKOfkO7tNYYPp3jKwD7bto-3CvtkHTs3Gtwdyr7cA7_YAZod9l3BwIR-4mnEF8qFZteNCMffn8R_TrVVa6NquL64su_5xcblWl3Z9yEWXDyP-L_gX9b2gtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217876537</pqid></control><display><type>article</type><title>Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fiechtner, Gregory J ; Cummings, Eric B</creator><creatorcontrib>Fiechtner, Gregory J ; Cummings, Eric B</creatorcontrib><description>A novel methodology for designing microfluidic channels for low-dispersion, electrokinetic flows is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeabilitya quantity with dimensions of length that we introduce to derive the governing equations. Two-interface systems are used to eliminate hydrodynamic rotation of bands injected into channels. Regions bounded by interfaces form faceted flow “prisms” with uniform velocity fields that can be combined with other prisms to obtain a wide range of turning angles and expansion ratios. Lengths of faceted prisms can be varied arbitrarily, simplifying chip layout and allowing the ability to reduce unwanted effects such as transverse diffusion and Joule heating for a given faceted prism. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0207776</identifier><identifier>PMID: 14674450</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Applied fluid mechanics ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Exact sciences and technology ; Fluid dynamics ; Fluidics ; Fundamental areas of phenomenology (including applications) ; Kinetics ; Other chromatographic methods ; Physics</subject><ispartof>Analytical chemistry (Washington), 2003-09, Vol.75 (18), p.4747-4755</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Sept 15, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333</citedby><cites>FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15126044$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14674450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiechtner, Gregory J</creatorcontrib><creatorcontrib>Cummings, Eric B</creatorcontrib><title>Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel methodology for designing microfluidic channels for low-dispersion, electrokinetic flows is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeabilitya quantity with dimensions of length that we introduce to derive the governing equations. Two-interface systems are used to eliminate hydrodynamic rotation of bands injected into channels. Regions bounded by interfaces form faceted flow “prisms” with uniform velocity fields that can be combined with other prisms to obtain a wide range of turning angles and expansion ratios. Lengths of faceted prisms can be varied arbitrarily, simplifying chip layout and allowing the ability to reduce unwanted effects such as transverse diffusion and Joule heating for a given faceted prism. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.</description><subject>Analytical chemistry</subject><subject>Applied fluid mechanics</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Kinetics</subject><subject>Other chromatographic methods</subject><subject>Physics</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplkF1rFDEUhoModq1e-AckCAq9GD35mCR7KdtuFVYs7epFb8KZTEbTzk7WZIbaf2_KLl3Qq8DJw8v7PoS8ZvCBAWcf0QEHrbV6Qmas5lApY_hTMgMAUXENcERe5HwDwBgw9ZwcMam0lDXMyPUSnR99S099Dj8HGju6-IXD4PtMu5joKt5VpyFvfcohDvSs925M8TYMfgyOLvt4l2kY6NfgUuz6KbTlenWfR7_JL8mzDvvsX-3fY_J9ebZefK5W386_LD6tKpSgxopDUwspu2betRznWhsxx9r4WgtEwXijFJqGadN4jQa5cdgpRJCtFsILIY7J-13uNsXfk8-j3YTsfN_j4OOUrS5rjaxlAd_-A97EKQ2lm-UlX6ta6AKd7KAyKOfkO7tNYYPp3jKwD7bto-3CvtkHTs3Gtwdyr7cA7_YAZod9l3BwIR-4mnEF8qFZteNCMffn8R_TrVVa6NquL64su_5xcblWl3Z9yEWXDyP-L_gX9b2gtg</recordid><startdate>20030915</startdate><enddate>20030915</enddate><creator>Fiechtner, Gregory J</creator><creator>Cummings, Eric B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20030915</creationdate><title>Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems</title><author>Fiechtner, Gregory J ; Cummings, Eric B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analytical chemistry</topic><topic>Applied fluid mechanics</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Kinetics</topic><topic>Other chromatographic methods</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiechtner, Gregory J</creatorcontrib><creatorcontrib>Cummings, Eric B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiechtner, Gregory J</au><au>Cummings, Eric B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2003-09-15</date><risdate>2003</risdate><volume>75</volume><issue>18</issue><spage>4747</spage><epage>4755</epage><pages>4747-4755</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A novel methodology for designing microfluidic channels for low-dispersion, electrokinetic flows is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeabilitya quantity with dimensions of length that we introduce to derive the governing equations. Two-interface systems are used to eliminate hydrodynamic rotation of bands injected into channels. Regions bounded by interfaces form faceted flow “prisms” with uniform velocity fields that can be combined with other prisms to obtain a wide range of turning angles and expansion ratios. Lengths of faceted prisms can be varied arbitrarily, simplifying chip layout and allowing the ability to reduce unwanted effects such as transverse diffusion and Joule heating for a given faceted prism. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>14674450</pmid><doi>10.1021/ac0207776</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2003-09, Vol.75 (18), p.4747-4755 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_71468454 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Applied fluid mechanics Chemistry Chromatographic methods and physical methods associated with chromatography Exact sciences and technology Fluid dynamics Fluidics Fundamental areas of phenomenology (including applications) Kinetics Other chromatographic methods Physics |
title | Faceted Design of Channels for Low-Dispersion Electrokinetic Flows in Microfluidic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A13%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faceted%20Design%20of%20Channels%20for%20Low-Dispersion%20Electrokinetic%20Flows%20in%20Microfluidic%20Systems&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Fiechtner,%20Gregory%20J&rft.date=2003-09-15&rft.volume=75&rft.issue=18&rft.spage=4747&rft.epage=4755&rft.pages=4747-4755&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0207776&rft_dat=%3Cproquest_cross%3E484671531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a406t-20b5344fb9fd2a977839a58e573aa312b66a8b178be7a8a28caf6aa04d733e333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217876537&rft_id=info:pmid/14674450&rfr_iscdi=true |