Loading…
Characterization of an Arabidopsis mutant deficient in gamma-tocopherol methyltransferase
Alpha-tocopherol (vitamin E) is synthesized from gamma-tocopherol in chloroplasts by gamma-tocopherol methyltransferase (gamma-TMT; VTE4). Leaves of many plant species including Arabidopsis contain high levels of alpha-tocopherol, but are low in gamma-tocopherol. To unravel the function of different...
Saved in:
Published in: | Plant molecular biology 2003-08, Vol.52 (6), p.1181-1190 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alpha-tocopherol (vitamin E) is synthesized from gamma-tocopherol in chloroplasts by gamma-tocopherol methyltransferase (gamma-TMT; VTE4). Leaves of many plant species including Arabidopsis contain high levels of alpha-tocopherol, but are low in gamma-tocopherol. To unravel the function of different forms of tocopherol in plants, an Arabidopsis plant (vte4-1) carrying a functional null mutation in the gene gamma-TMT was isolated by screening a mutant population via thin-layer chromatography. A second mutant allele (vte4-2) carrying a T-DNA insertion in the coding sequence of gamma-TMT was identified in a T-DNA tagged mutant population. In vte4-1 and vte4-2 leaves, high levels of gamma-tocopherol accumulated, whereas alpha-tocopherol was absent indicating that, presumably, these two mutants represents null alleles. Over-expression of the gamma-TMT cDNA in vte4-1 restored wild-type tocopherol composition. Mutant plants were very similar to wild type. During oxidative stress (high light, high temperature, cold treatment) the amounts of alpha-tocopherol and gamma-tocopherol increased in wild type, and gamma-tocopherol in vte4-1. However, chlorophyll content and photosynthetic quantum yield were very similar in wild type and vte4-1, suggesting that alpha-tocopherol can be replaced by gamma-tocopherol in vte4-1 to protect the photosynthetic apparatus against oxidative stress. Fatty acid and lipid composition were very similar in WT, vte4-1 and vte1, an Arabidopsis mutant previously isolated which is completely devoid of tocopherol. Therefore, a shift in tocopherol composition or the absence of tocopherol has no major impact on the amounts of specific fatty acids or on lipid hydrolysis. |
---|---|
ISSN: | 0167-4412 |
DOI: | 10.1023/B:PLAN.0000004307.62398.91 |