Loading…

Effect of hyperdiffusivity on turbulent dynamos with helicity

In numerical studies of turbulence, hyperviscosity is often used as a tool to extend the inertial subrange and to reduce the dissipative subrange. By analogy, hyperdiffusivity (or hyperresistivity) is sometimes used in magnetohydrodynamics. The underlying assumption is that only the small scales are...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2002-02, Vol.88 (5), p.055003-055003, Article 055003
Main Authors: Brandenburg, Axel, Sarson, Graeme R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In numerical studies of turbulence, hyperviscosity is often used as a tool to extend the inertial subrange and to reduce the dissipative subrange. By analogy, hyperdiffusivity (or hyperresistivity) is sometimes used in magnetohydrodynamics. The underlying assumption is that only the small scales are affected by this manipulation. In the present paper, possible side effects on the evolution of the large-scale magnetic field are investigated. It is found that for turbulent flows with helicity, hyperdiffusivity causes the dynamo-generated magnetic field to saturate at a higher level than normal diffusivity. This result is successfully interpreted in terms of magnetic helicity conservation, which also predicts that full saturation is reached only after a time comparable to the large-scale magnetic (hyper)diffusion time.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.88.055003