Loading…

Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond

Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the ‘male’ (pollen) and ‘fe...

Full description

Saved in:
Bibliographic Details
Published in:Trends in plant science 2003-12, Vol.8 (12), p.606-613
Main Authors: Hiscock, Simon J., McInnis, Stephanie M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the ‘male’ (pollen) and ‘female’ (pistil) recognition determinants of SI. In sporophytic SI (SSI) the male determinant is expressed in the diploid anther, therefore haploid pollen grains behave with a diploid S phenotype. In Brassica, the male and the female determinants of SSI have been identified as a peptide ligand and its cognate receptor, respectively, and recent studies have identified downstream signalling molecules involved in pollen rejection. It now needs to be established whether the Brassica mechanism is universal in species with SSI, or unique to the Brassicaceae.
ISSN:1360-1385
1878-4372
DOI:10.1016/j.tplants.2003.10.007