Loading…
Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors
Mitochondrial dysfunction has been associated with Parkinson's disease. However, the role of mitochondrial defects in the formation of Lewy bodies, a pathological hallmark of Parkinson's disease has not been addressed directly. In this report, we investigated the effects of inhibitors of t...
Saved in:
Published in: | The Journal of biological chemistry 2002-02, Vol.277 (7), p.5411-5417 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mitochondrial dysfunction has been associated with Parkinson's disease. However, the role of mitochondrial defects in the formation of Lewy bodies, a pathological hallmark of Parkinson's disease has not been addressed directly. In this report, we investigated the effects of inhibitors of the mitochondrial electron-transport chain on the aggregation of alpha-synuclein, a major protein component of Lewy bodies. Treatment with rotenone, an inhibitor of complex I, resulted in an increase of detergent-resistant alpha-synuclein aggregates and a reduction in ATP level. Another inhibitor of the electron-transport chain, oligomycin, also showed temporal correlation between the formation of aggregates and ATP reduction. Microscopic analyses showed a progressive evolution of small aggregates of alpha-synuclein to a large perinuclear inclusion body. The inclusions were co-stained with ubiquitin, 20 S proteasome, gamma-tubulin, and vimentin. The perinuclear inclusion bodies, but not the small cytoplasmic aggregates, were thioflavin S-positive, suggesting the amyloid-like conformation. Interestingly, the aggregates disappeared when the cells were replenished with inhibitor-free medium. Disappearance of aggregates coincided with the recovery of mitochondrial metabolism and was partially inhibited by proteasome inhibitors. These results suggest that the formation of alpha-synuclein inclusions could be initiated by an impaired mitochondrial function and be reversed by restoring normal mitochondrial metabolism. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M105326200 |