Magnetic domain confinement by anisotropy modulation
The spin configuration in a magnet is in general a "natural" consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates wit...
Saved in:
Published in: | Physical review letters 2002-02, Vol.88 (8), p.087202-087202, Article 087202 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spin configuration in a magnet is in general a "natural" consequence of both the intrinsic properties of the material and the sample dimensions. We demonstrate that this limitation can be overcome in a homogeneous ferromagnetic film by engineering an anisotropy contrast. Substrates with laterally modulated single-crystal and polycrystalline surface regions were used to induce selective epitaxial growth of a ferromagnetic Ni film. The resulting spatially varying magnetic anisotropy leads to regular perpendicular and in-plane magnetic domains, separated by a new type of magnetic wall---the "anisotropy constrained" magnetic wall. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.88.087202 |