Loading…
Activation of a LTR-retrotransposon by telomere erosion
Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA l...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (26), p.15736-15741 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3 |
container_end_page | 15741 |
container_issue | 26 |
container_start_page | 15736 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Scholes, D.T Kenny, A.E Gamache, E.R Mou, Z Curcio, M.J |
description | Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction. |
doi_str_mv | 10.1073/pnas.2136609100 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71486231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3149075</jstor_id><sourcerecordid>3149075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</originalsourceid><addsrcrecordid>eNqFks1PGzEQxS1UBCntmUvV7qlSDwszHq-9PvSAUD-QIiG1cLacXRsWbdap7aDy39dRIlJOnGxpfm_0Zt4wdopwhqDofDXZdMaRpASNAAdshuVTS6HhDZsBcFW3gotj9jalBwDQTQtH7BiFVAS6nTF10eXh0eYhTFXwla3mN7_q6HIMOdoprUIqhcVTld0Yli66ysWQCvyOHXo7Jvd-956w2-_fbi5_1vPrH1eXF_O6E9RCLRR0xAmLEUd9h31DfMGFbsH2GqXvZUO-RU2tX_QI3jW99FqAEAXmjacT9nXbd7VeLF3fuan4Gs0qDksbn0ywg3lZmYZ7cxceDYGSpIr-804fw5-1S9ksh9S5cbSTC-tkFIpWFoOvgqh52Z1uCni-BbuyiRSdfzaDYDahmE0oZh9KUXz8f4Y9v0uhANUO2Cj37cBwabBRJAvy5RXE-PU4Zvc3F_bDln1IOcRnmLBchdoM8Glb9jYYexeHZG5_c0ACBInUCPoH12my2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19258095</pqid></control><display><type>article</type><title>Activation of a LTR-retrotransposon by telomere erosion</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</creator><creatorcontrib>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</creatorcontrib><description>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2136609100</identifier><identifier>PMID: 14673098</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Complementary DNA ; Congenic strains ; DNA ; DNA Damage ; DNA Replication ; DNA, Fungal - genetics ; Gene Expression Regulation, Fungal - genetics ; Genetic erosion ; Genetic transposition ; Genomics ; Homozygote ; length ; Models, Genetic ; mutants ; Rad17 protein ; Rad24 protein ; Rad9 protein ; Retroelements - genetics ; retrotransposition ; retrotransposons ; RNA ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Spores ; Subcultures ; telomerase ; Telomere - genetics ; Telomeres ; terminal repeat sequences ; Terminal Repeat Sequences - genetics ; transposition (genetics) ; transposon Ty1</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15736-15741</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</citedby><cites>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3149075$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3149075$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14673098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholes, D.T</creatorcontrib><creatorcontrib>Kenny, A.E</creatorcontrib><creatorcontrib>Gamache, E.R</creatorcontrib><creatorcontrib>Mou, Z</creatorcontrib><creatorcontrib>Curcio, M.J</creatorcontrib><title>Activation of a LTR-retrotransposon by telomere erosion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</description><subject>Biological Sciences</subject><subject>Complementary DNA</subject><subject>Congenic strains</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Replication</subject><subject>DNA, Fungal - genetics</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Genetic erosion</subject><subject>Genetic transposition</subject><subject>Genomics</subject><subject>Homozygote</subject><subject>length</subject><subject>Models, Genetic</subject><subject>mutants</subject><subject>Rad17 protein</subject><subject>Rad24 protein</subject><subject>Rad9 protein</subject><subject>Retroelements - genetics</subject><subject>retrotransposition</subject><subject>retrotransposons</subject><subject>RNA</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Spores</subject><subject>Subcultures</subject><subject>telomerase</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>terminal repeat sequences</subject><subject>Terminal Repeat Sequences - genetics</subject><subject>transposition (genetics)</subject><subject>transposon Ty1</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFks1PGzEQxS1UBCntmUvV7qlSDwszHq-9PvSAUD-QIiG1cLacXRsWbdap7aDy39dRIlJOnGxpfm_0Zt4wdopwhqDofDXZdMaRpASNAAdshuVTS6HhDZsBcFW3gotj9jalBwDQTQtH7BiFVAS6nTF10eXh0eYhTFXwla3mN7_q6HIMOdoprUIqhcVTld0Yli66ysWQCvyOHXo7Jvd-956w2-_fbi5_1vPrH1eXF_O6E9RCLRR0xAmLEUd9h31DfMGFbsH2GqXvZUO-RU2tX_QI3jW99FqAEAXmjacT9nXbd7VeLF3fuan4Gs0qDksbn0ywg3lZmYZ7cxceDYGSpIr-804fw5-1S9ksh9S5cbSTC-tkFIpWFoOvgqh52Z1uCni-BbuyiRSdfzaDYDahmE0oZh9KUXz8f4Y9v0uhANUO2Cj37cBwabBRJAvy5RXE-PU4Zvc3F_bDln1IOcRnmLBchdoM8Glb9jYYexeHZG5_c0ACBInUCPoH12my2Q</recordid><startdate>20031223</startdate><enddate>20031223</enddate><creator>Scholes, D.T</creator><creator>Kenny, A.E</creator><creator>Gamache, E.R</creator><creator>Mou, Z</creator><creator>Curcio, M.J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031223</creationdate><title>Activation of a LTR-retrotransposon by telomere erosion</title><author>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological Sciences</topic><topic>Complementary DNA</topic><topic>Congenic strains</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Replication</topic><topic>DNA, Fungal - genetics</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Genetic erosion</topic><topic>Genetic transposition</topic><topic>Genomics</topic><topic>Homozygote</topic><topic>length</topic><topic>Models, Genetic</topic><topic>mutants</topic><topic>Rad17 protein</topic><topic>Rad24 protein</topic><topic>Rad9 protein</topic><topic>Retroelements - genetics</topic><topic>retrotransposition</topic><topic>retrotransposons</topic><topic>RNA</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Spores</topic><topic>Subcultures</topic><topic>telomerase</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>terminal repeat sequences</topic><topic>Terminal Repeat Sequences - genetics</topic><topic>transposition (genetics)</topic><topic>transposon Ty1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, D.T</creatorcontrib><creatorcontrib>Kenny, A.E</creatorcontrib><creatorcontrib>Gamache, E.R</creatorcontrib><creatorcontrib>Mou, Z</creatorcontrib><creatorcontrib>Curcio, M.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, D.T</au><au>Kenny, A.E</au><au>Gamache, E.R</au><au>Mou, Z</au><au>Curcio, M.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of a LTR-retrotransposon by telomere erosion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-23</date><risdate>2003</risdate><volume>100</volume><issue>26</issue><spage>15736</spage><epage>15741</epage><pages>15736-15741</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14673098</pmid><doi>10.1073/pnas.2136609100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15736-15741 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_71486231 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Biological Sciences Complementary DNA Congenic strains DNA DNA Damage DNA Replication DNA, Fungal - genetics Gene Expression Regulation, Fungal - genetics Genetic erosion Genetic transposition Genomics Homozygote length Models, Genetic mutants Rad17 protein Rad24 protein Rad9 protein Retroelements - genetics retrotransposition retrotransposons RNA Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Spores Subcultures telomerase Telomere - genetics Telomeres terminal repeat sequences Terminal Repeat Sequences - genetics transposition (genetics) transposon Ty1 |
title | Activation of a LTR-retrotransposon by telomere erosion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20a%20LTR-retrotransposon%20by%20telomere%20erosion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Scholes,%20D.T&rft.date=2003-12-23&rft.volume=100&rft.issue=26&rft.spage=15736&rft.epage=15741&rft.pages=15736-15741&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2136609100&rft_dat=%3Cjstor_proqu%3E3149075%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19258095&rft_id=info:pmid/14673098&rft_jstor_id=3149075&rfr_iscdi=true |