Loading…

Activation of a LTR-retrotransposon by telomere erosion

Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA l...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-12, Vol.100 (26), p.15736-15741
Main Authors: Scholes, D.T, Kenny, A.E, Gamache, E.R, Mou, Z, Curcio, M.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3
cites cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3
container_end_page 15741
container_issue 26
container_start_page 15736
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Scholes, D.T
Kenny, A.E
Gamache, E.R
Mou, Z
Curcio, M.J
description Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.
doi_str_mv 10.1073/pnas.2136609100
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71486231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3149075</jstor_id><sourcerecordid>3149075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</originalsourceid><addsrcrecordid>eNqFks1PGzEQxS1UBCntmUvV7qlSDwszHq-9PvSAUD-QIiG1cLacXRsWbdap7aDy39dRIlJOnGxpfm_0Zt4wdopwhqDofDXZdMaRpASNAAdshuVTS6HhDZsBcFW3gotj9jalBwDQTQtH7BiFVAS6nTF10eXh0eYhTFXwla3mN7_q6HIMOdoprUIqhcVTld0Yli66ysWQCvyOHXo7Jvd-956w2-_fbi5_1vPrH1eXF_O6E9RCLRR0xAmLEUd9h31DfMGFbsH2GqXvZUO-RU2tX_QI3jW99FqAEAXmjacT9nXbd7VeLF3fuan4Gs0qDksbn0ywg3lZmYZ7cxceDYGSpIr-804fw5-1S9ksh9S5cbSTC-tkFIpWFoOvgqh52Z1uCni-BbuyiRSdfzaDYDahmE0oZh9KUXz8f4Y9v0uhANUO2Cj37cBwabBRJAvy5RXE-PU4Zvc3F_bDln1IOcRnmLBchdoM8Glb9jYYexeHZG5_c0ACBInUCPoH12my2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19258095</pqid></control><display><type>article</type><title>Activation of a LTR-retrotransposon by telomere erosion</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</creator><creatorcontrib>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</creatorcontrib><description>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2136609100</identifier><identifier>PMID: 14673098</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Complementary DNA ; Congenic strains ; DNA ; DNA Damage ; DNA Replication ; DNA, Fungal - genetics ; Gene Expression Regulation, Fungal - genetics ; Genetic erosion ; Genetic transposition ; Genomics ; Homozygote ; length ; Models, Genetic ; mutants ; Rad17 protein ; Rad24 protein ; Rad9 protein ; Retroelements - genetics ; retrotransposition ; retrotransposons ; RNA ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Spores ; Subcultures ; telomerase ; Telomere - genetics ; Telomeres ; terminal repeat sequences ; Terminal Repeat Sequences - genetics ; transposition (genetics) ; transposon Ty1</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15736-15741</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</citedby><cites>FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/26.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3149075$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3149075$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14673098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholes, D.T</creatorcontrib><creatorcontrib>Kenny, A.E</creatorcontrib><creatorcontrib>Gamache, E.R</creatorcontrib><creatorcontrib>Mou, Z</creatorcontrib><creatorcontrib>Curcio, M.J</creatorcontrib><title>Activation of a LTR-retrotransposon by telomere erosion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</description><subject>Biological Sciences</subject><subject>Complementary DNA</subject><subject>Congenic strains</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA Replication</subject><subject>DNA, Fungal - genetics</subject><subject>Gene Expression Regulation, Fungal - genetics</subject><subject>Genetic erosion</subject><subject>Genetic transposition</subject><subject>Genomics</subject><subject>Homozygote</subject><subject>length</subject><subject>Models, Genetic</subject><subject>mutants</subject><subject>Rad17 protein</subject><subject>Rad24 protein</subject><subject>Rad9 protein</subject><subject>Retroelements - genetics</subject><subject>retrotransposition</subject><subject>retrotransposons</subject><subject>RNA</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Spores</subject><subject>Subcultures</subject><subject>telomerase</subject><subject>Telomere - genetics</subject><subject>Telomeres</subject><subject>terminal repeat sequences</subject><subject>Terminal Repeat Sequences - genetics</subject><subject>transposition (genetics)</subject><subject>transposon Ty1</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFks1PGzEQxS1UBCntmUvV7qlSDwszHq-9PvSAUD-QIiG1cLacXRsWbdap7aDy39dRIlJOnGxpfm_0Zt4wdopwhqDofDXZdMaRpASNAAdshuVTS6HhDZsBcFW3gotj9jalBwDQTQtH7BiFVAS6nTF10eXh0eYhTFXwla3mN7_q6HIMOdoprUIqhcVTld0Yli66ysWQCvyOHXo7Jvd-956w2-_fbi5_1vPrH1eXF_O6E9RCLRR0xAmLEUd9h31DfMGFbsH2GqXvZUO-RU2tX_QI3jW99FqAEAXmjacT9nXbd7VeLF3fuan4Gs0qDksbn0ywg3lZmYZ7cxceDYGSpIr-804fw5-1S9ksh9S5cbSTC-tkFIpWFoOvgqh52Z1uCni-BbuyiRSdfzaDYDahmE0oZh9KUXz8f4Y9v0uhANUO2Cj37cBwabBRJAvy5RXE-PU4Zvc3F_bDln1IOcRnmLBchdoM8Glb9jYYexeHZG5_c0ACBInUCPoH12my2Q</recordid><startdate>20031223</startdate><enddate>20031223</enddate><creator>Scholes, D.T</creator><creator>Kenny, A.E</creator><creator>Gamache, E.R</creator><creator>Mou, Z</creator><creator>Curcio, M.J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031223</creationdate><title>Activation of a LTR-retrotransposon by telomere erosion</title><author>Scholes, D.T ; Kenny, A.E ; Gamache, E.R ; Mou, Z ; Curcio, M.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological Sciences</topic><topic>Complementary DNA</topic><topic>Congenic strains</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA Replication</topic><topic>DNA, Fungal - genetics</topic><topic>Gene Expression Regulation, Fungal - genetics</topic><topic>Genetic erosion</topic><topic>Genetic transposition</topic><topic>Genomics</topic><topic>Homozygote</topic><topic>length</topic><topic>Models, Genetic</topic><topic>mutants</topic><topic>Rad17 protein</topic><topic>Rad24 protein</topic><topic>Rad9 protein</topic><topic>Retroelements - genetics</topic><topic>retrotransposition</topic><topic>retrotransposons</topic><topic>RNA</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Spores</topic><topic>Subcultures</topic><topic>telomerase</topic><topic>Telomere - genetics</topic><topic>Telomeres</topic><topic>terminal repeat sequences</topic><topic>Terminal Repeat Sequences - genetics</topic><topic>transposition (genetics)</topic><topic>transposon Ty1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholes, D.T</creatorcontrib><creatorcontrib>Kenny, A.E</creatorcontrib><creatorcontrib>Gamache, E.R</creatorcontrib><creatorcontrib>Mou, Z</creatorcontrib><creatorcontrib>Curcio, M.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholes, D.T</au><au>Kenny, A.E</au><au>Gamache, E.R</au><au>Mou, Z</au><au>Curcio, M.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of a LTR-retrotransposon by telomere erosion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-12-23</date><risdate>2003</risdate><volume>100</volume><issue>26</issue><spage>15736</spage><epage>15741</epage><pages>15736-15741</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Retrotransposons can facilitate repair of broken chromosomes, and therefore an important question is whether the host can activate retrotransposons in response to chromosomal lesions. Here we show that Ty1 elements, which are LTR-retrotransposons in Saccharomyces cerevisiae, are mobilized when DNA lesions are created by the loss of telomere function. Inactivation of telomerase in yeast results in progressive shortening of telomeric DNA, eventually triggering a DNA-damage checkpoint that arrests cells in G2/M. A fraction of cells, termed survivors, recover from arrest by forming alternative telomere structures. When telomerase is inactivated, Ty1 retrotransposition increases substantially in parallel with telomere erosion and then partially declines when survivors emerge. Retrotransposition is stimulated at the level of Ty1 cDNA synthesis, causing cDNA levels to increase 20-fold or more before survivors form. This response is elicited through a signaling pathway that includes Rad24, Rad17, and Rad9, three components of the DNA-damage checkpoint. Our findings indicate that Ty1 retrotransposons are activated as part of the cellular response to telomere dysfunction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14673098</pmid><doi>10.1073/pnas.2136609100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-12, Vol.100 (26), p.15736-15741
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_71486231
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Biological Sciences
Complementary DNA
Congenic strains
DNA
DNA Damage
DNA Replication
DNA, Fungal - genetics
Gene Expression Regulation, Fungal - genetics
Genetic erosion
Genetic transposition
Genomics
Homozygote
length
Models, Genetic
mutants
Rad17 protein
Rad24 protein
Rad9 protein
Retroelements - genetics
retrotransposition
retrotransposons
RNA
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Spores
Subcultures
telomerase
Telomere - genetics
Telomeres
terminal repeat sequences
Terminal Repeat Sequences - genetics
transposition (genetics)
transposon Ty1
title Activation of a LTR-retrotransposon by telomere erosion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20a%20LTR-retrotransposon%20by%20telomere%20erosion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Scholes,%20D.T&rft.date=2003-12-23&rft.volume=100&rft.issue=26&rft.spage=15736&rft.epage=15741&rft.pages=15736-15741&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2136609100&rft_dat=%3Cjstor_proqu%3E3149075%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4380-470c3231027e3dc1d532b24980ad916fd653f81938fbd10fe5d6f94044dc125f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19258095&rft_id=info:pmid/14673098&rft_jstor_id=3149075&rfr_iscdi=true