Loading…

Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart

G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 s...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2002-02, Vol.33 (5), p.715-729
Main Authors: Ma, Dzwokai, Zerangue, Noa, Raab-Graham, Kimberly, Fried, Sharon R., Jan, Yuh Nung, Jan, Lily Yeh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3
cites cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3
container_end_page 729
container_issue 5
container_start_page 715
container_title Neuron (Cambridge, Mass.)
container_volume 33
creator Ma, Dzwokai
Zerangue, Noa
Raab-Graham, Kimberly
Fried, Sharon R.
Jan, Yuh Nung
Jan, Lily Yeh
description G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.
doi_str_mv 10.1016/S0896-6273(02)00614-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71499283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302006141</els_id><sourcerecordid>71499283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</originalsourceid><addsrcrecordid>eNqFkd1qFDEYQAdR7Fp9BCUgiF6MJpPMTHIldattocWi9Tpkki-aOpOsSWZlX8JnNvtDBW96FQgnJ3zfqarnBL8lmHTvvmIuurprevoaN28w7giryYNqQbDoa0aEeFgt7pCj6klKtxgT1gryuDoihPeiY2JR_Tl1a4gJ0E1U1jr90_nv6FrlDNEndDoDygFdzWN2q_EOQlchO5uQ8-gMXceQwfn6RGe3VhkMuvC_VTTjBn2Bcmc3O2XIKiU3T2j5Q3kPY0I2hgl9iKpYlDfoHFTMT6tHVo0Jnh3O4-rbp483y_P68vPZxfLkstYtb3PNgFneUGFAEI0Fpz2zYiDWUGY71QzcdP0wCD00hDIuTBmcYtNRaJngnGl6XL3ae1cx_JohZTm5pGEclYcwJ9kTJkTD6b0g4VQQxkkBX_4H3oY5-jKEJC2mfYdLlEK1e0rHkFIEK1fRTSpuJMFy21XuusptNIkbuesqt_YXB_s8TGD-vTqELMD7PVA2C2sHUSbtwGswLpYK0gR3zxd_AWtLsns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503760419</pqid></control><display><type>article</type><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</creator><creatorcontrib>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</creatorcontrib><description>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00614-1</identifier><identifier>PMID: 11879649</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Brain - metabolism ; Cells, Cultured ; COS Cells ; Culture Media, Serum-Free ; Electrophysiology ; Endocytosis - physiology ; Endoplasmic Reticulum - chemistry ; Endoplasmic Reticulum - metabolism ; Fluorescent Dyes - metabolism ; Heart ; Heart - physiology ; Heart rate ; Hippocampus - cytology ; Hippocampus - metabolism ; Microscopy, Confocal ; Microtubules - metabolism ; Molecular Sequence Data ; Neurons - cytology ; Neurons - metabolism ; Oocytes - physiology ; Potassium ; Potassium Channels, Inwardly Rectifying - chemistry ; Potassium Channels, Inwardly Rectifying - metabolism ; Protein Sorting Signals ; Protein Subunits ; Protein Transport - physiology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Sequence Alignment</subject><ispartof>Neuron (Cambridge, Mass.), 2002-02, Vol.33 (5), p.715-729</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Feb 28, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</citedby><cites>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11879649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Dzwokai</creatorcontrib><creatorcontrib>Zerangue, Noa</creatorcontrib><creatorcontrib>Raab-Graham, Kimberly</creatorcontrib><creatorcontrib>Fried, Sharon R.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cells, Cultured</subject><subject>COS Cells</subject><subject>Culture Media, Serum-Free</subject><subject>Electrophysiology</subject><subject>Endocytosis - physiology</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart rate</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Oocytes - physiology</subject><subject>Potassium</subject><subject>Potassium Channels, Inwardly Rectifying - chemistry</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Protein Sorting Signals</subject><subject>Protein Subunits</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sequence Alignment</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkd1qFDEYQAdR7Fp9BCUgiF6MJpPMTHIldattocWi9Tpkki-aOpOsSWZlX8JnNvtDBW96FQgnJ3zfqarnBL8lmHTvvmIuurprevoaN28w7giryYNqQbDoa0aEeFgt7pCj6klKtxgT1gryuDoihPeiY2JR_Tl1a4gJ0E1U1jr90_nv6FrlDNEndDoDygFdzWN2q_EOQlchO5uQ8-gMXceQwfn6RGe3VhkMuvC_VTTjBn2Bcmc3O2XIKiU3T2j5Q3kPY0I2hgl9iKpYlDfoHFTMT6tHVo0Jnh3O4-rbp483y_P68vPZxfLkstYtb3PNgFneUGFAEI0Fpz2zYiDWUGY71QzcdP0wCD00hDIuTBmcYtNRaJngnGl6XL3ae1cx_JohZTm5pGEclYcwJ9kTJkTD6b0g4VQQxkkBX_4H3oY5-jKEJC2mfYdLlEK1e0rHkFIEK1fRTSpuJMFy21XuusptNIkbuesqt_YXB_s8TGD-vTqELMD7PVA2C2sHUSbtwGswLpYK0gR3zxd_AWtLsns</recordid><startdate>20020228</startdate><enddate>20020228</enddate><creator>Ma, Dzwokai</creator><creator>Zerangue, Noa</creator><creator>Raab-Graham, Kimberly</creator><creator>Fried, Sharon R.</creator><creator>Jan, Yuh Nung</creator><creator>Jan, Lily Yeh</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020228</creationdate><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><author>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cells, Cultured</topic><topic>COS Cells</topic><topic>Culture Media, Serum-Free</topic><topic>Electrophysiology</topic><topic>Endocytosis - physiology</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart rate</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Oocytes - physiology</topic><topic>Potassium</topic><topic>Potassium Channels, Inwardly Rectifying - chemistry</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Protein Sorting Signals</topic><topic>Protein Subunits</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dzwokai</creatorcontrib><creatorcontrib>Zerangue, Noa</creatorcontrib><creatorcontrib>Raab-Graham, Kimberly</creatorcontrib><creatorcontrib>Fried, Sharon R.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dzwokai</au><au>Zerangue, Noa</au><au>Raab-Graham, Kimberly</au><au>Fried, Sharon R.</au><au>Jan, Yuh Nung</au><au>Jan, Lily Yeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-02-28</date><risdate>2002</risdate><volume>33</volume><issue>5</issue><spage>715</spage><epage>729</epage><pages>715-729</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11879649</pmid><doi>10.1016/S0896-6273(02)00614-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2002-02, Vol.33 (5), p.715-729
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_71499283
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Amino Acid Motifs
Amino Acid Sequence
Animals
Brain - metabolism
Cells, Cultured
COS Cells
Culture Media, Serum-Free
Electrophysiology
Endocytosis - physiology
Endoplasmic Reticulum - chemistry
Endoplasmic Reticulum - metabolism
Fluorescent Dyes - metabolism
Heart
Heart - physiology
Heart rate
Hippocampus - cytology
Hippocampus - metabolism
Microscopy, Confocal
Microtubules - metabolism
Molecular Sequence Data
Neurons - cytology
Neurons - metabolism
Oocytes - physiology
Potassium
Potassium Channels, Inwardly Rectifying - chemistry
Potassium Channels, Inwardly Rectifying - metabolism
Protein Sorting Signals
Protein Subunits
Protein Transport - physiology
Proteins
Rats
Rats, Sprague-Dawley
Sequence Alignment
title Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20Trafficking%20Patterns%20Due%20to%20Multiple%20Traffic%20Motifs%20in%20G%20Protein-Activated%20Inwardly%20Rectifying%20Potassium%20Channels%20from%20Brain%20and%20Heart&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Ma,%20Dzwokai&rft.date=2002-02-28&rft.volume=33&rft.issue=5&rft.spage=715&rft.epage=729&rft.pages=715-729&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00614-1&rft_dat=%3Cproquest_cross%3E71499283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503760419&rft_id=info:pmid/11879649&rfr_iscdi=true