Loading…
Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart
G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 s...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2002-02, Vol.33 (5), p.715-729 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3 |
container_end_page | 729 |
container_issue | 5 |
container_start_page | 715 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 33 |
creator | Ma, Dzwokai Zerangue, Noa Raab-Graham, Kimberly Fried, Sharon R. Jan, Yuh Nung Jan, Lily Yeh |
description | G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane. |
doi_str_mv | 10.1016/S0896-6273(02)00614-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71499283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302006141</els_id><sourcerecordid>71499283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</originalsourceid><addsrcrecordid>eNqFkd1qFDEYQAdR7Fp9BCUgiF6MJpPMTHIldattocWi9Tpkki-aOpOsSWZlX8JnNvtDBW96FQgnJ3zfqarnBL8lmHTvvmIuurprevoaN28w7giryYNqQbDoa0aEeFgt7pCj6klKtxgT1gryuDoihPeiY2JR_Tl1a4gJ0E1U1jr90_nv6FrlDNEndDoDygFdzWN2q_EOQlchO5uQ8-gMXceQwfn6RGe3VhkMuvC_VTTjBn2Bcmc3O2XIKiU3T2j5Q3kPY0I2hgl9iKpYlDfoHFTMT6tHVo0Jnh3O4-rbp483y_P68vPZxfLkstYtb3PNgFneUGFAEI0Fpz2zYiDWUGY71QzcdP0wCD00hDIuTBmcYtNRaJngnGl6XL3ae1cx_JohZTm5pGEclYcwJ9kTJkTD6b0g4VQQxkkBX_4H3oY5-jKEJC2mfYdLlEK1e0rHkFIEK1fRTSpuJMFy21XuusptNIkbuesqt_YXB_s8TGD-vTqELMD7PVA2C2sHUSbtwGswLpYK0gR3zxd_AWtLsns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503760419</pqid></control><display><type>article</type><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</creator><creatorcontrib>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</creatorcontrib><description>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00614-1</identifier><identifier>PMID: 11879649</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Brain - metabolism ; Cells, Cultured ; COS Cells ; Culture Media, Serum-Free ; Electrophysiology ; Endocytosis - physiology ; Endoplasmic Reticulum - chemistry ; Endoplasmic Reticulum - metabolism ; Fluorescent Dyes - metabolism ; Heart ; Heart - physiology ; Heart rate ; Hippocampus - cytology ; Hippocampus - metabolism ; Microscopy, Confocal ; Microtubules - metabolism ; Molecular Sequence Data ; Neurons - cytology ; Neurons - metabolism ; Oocytes - physiology ; Potassium ; Potassium Channels, Inwardly Rectifying - chemistry ; Potassium Channels, Inwardly Rectifying - metabolism ; Protein Sorting Signals ; Protein Subunits ; Protein Transport - physiology ; Proteins ; Rats ; Rats, Sprague-Dawley ; Sequence Alignment</subject><ispartof>Neuron (Cambridge, Mass.), 2002-02, Vol.33 (5), p.715-729</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited Feb 28, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</citedby><cites>FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11879649$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Dzwokai</creatorcontrib><creatorcontrib>Zerangue, Noa</creatorcontrib><creatorcontrib>Raab-Graham, Kimberly</creatorcontrib><creatorcontrib>Fried, Sharon R.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cells, Cultured</subject><subject>COS Cells</subject><subject>Culture Media, Serum-Free</subject><subject>Electrophysiology</subject><subject>Endocytosis - physiology</subject><subject>Endoplasmic Reticulum - chemistry</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Heart</subject><subject>Heart - physiology</subject><subject>Heart rate</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - metabolism</subject><subject>Microscopy, Confocal</subject><subject>Microtubules - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Oocytes - physiology</subject><subject>Potassium</subject><subject>Potassium Channels, Inwardly Rectifying - chemistry</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Protein Sorting Signals</subject><subject>Protein Subunits</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sequence Alignment</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkd1qFDEYQAdR7Fp9BCUgiF6MJpPMTHIldattocWi9Tpkki-aOpOsSWZlX8JnNvtDBW96FQgnJ3zfqarnBL8lmHTvvmIuurprevoaN28w7giryYNqQbDoa0aEeFgt7pCj6klKtxgT1gryuDoihPeiY2JR_Tl1a4gJ0E1U1jr90_nv6FrlDNEndDoDygFdzWN2q_EOQlchO5uQ8-gMXceQwfn6RGe3VhkMuvC_VTTjBn2Bcmc3O2XIKiU3T2j5Q3kPY0I2hgl9iKpYlDfoHFTMT6tHVo0Jnh3O4-rbp483y_P68vPZxfLkstYtb3PNgFneUGFAEI0Fpz2zYiDWUGY71QzcdP0wCD00hDIuTBmcYtNRaJngnGl6XL3ae1cx_JohZTm5pGEclYcwJ9kTJkTD6b0g4VQQxkkBX_4H3oY5-jKEJC2mfYdLlEK1e0rHkFIEK1fRTSpuJMFy21XuusptNIkbuesqt_YXB_s8TGD-vTqELMD7PVA2C2sHUSbtwGswLpYK0gR3zxd_AWtLsns</recordid><startdate>20020228</startdate><enddate>20020228</enddate><creator>Ma, Dzwokai</creator><creator>Zerangue, Noa</creator><creator>Raab-Graham, Kimberly</creator><creator>Fried, Sharon R.</creator><creator>Jan, Yuh Nung</creator><creator>Jan, Lily Yeh</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020228</creationdate><title>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</title><author>Ma, Dzwokai ; Zerangue, Noa ; Raab-Graham, Kimberly ; Fried, Sharon R. ; Jan, Yuh Nung ; Jan, Lily Yeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cells, Cultured</topic><topic>COS Cells</topic><topic>Culture Media, Serum-Free</topic><topic>Electrophysiology</topic><topic>Endocytosis - physiology</topic><topic>Endoplasmic Reticulum - chemistry</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Heart</topic><topic>Heart - physiology</topic><topic>Heart rate</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - metabolism</topic><topic>Microscopy, Confocal</topic><topic>Microtubules - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Oocytes - physiology</topic><topic>Potassium</topic><topic>Potassium Channels, Inwardly Rectifying - chemistry</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Protein Sorting Signals</topic><topic>Protein Subunits</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Dzwokai</creatorcontrib><creatorcontrib>Zerangue, Noa</creatorcontrib><creatorcontrib>Raab-Graham, Kimberly</creatorcontrib><creatorcontrib>Fried, Sharon R.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Dzwokai</au><au>Zerangue, Noa</au><au>Raab-Graham, Kimberly</au><au>Fried, Sharon R.</au><au>Jan, Yuh Nung</au><au>Jan, Lily Yeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-02-28</date><risdate>2002</risdate><volume>33</volume><issue>5</issue><spage>715</spage><epage>729</epage><pages>715-729</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>G protein-activated inwardly rectifying potassium channels (Kir3, GIRK) provide an important mechanism for neurotransmitter regulation of membrane excitability. GIRK channels are tetramers containing various combinations of Kir3 subunits (Kir3.1–Kir3.4). We find that different combinations of Kir3 subunits exhibit a surprisingly complex spectrum of trafficking phenotypes. Kir3.2 and Kir3.4, but not Kir3.1, contain ER export signals that are important for plasma membrane expression of Kir3.1/Kir3.2 and Kir3.1/Kir3.4 heterotetramers, the GIRK channels found in the brain and the heart, respectively. Additional motifs in Kir3.2 and Kir3.4 control the trafficking between endosome and plasma membrane. In contrast, the Kir3.3 subunit potently inhibits plasma membrane expression by diverting the heterotetrameric channels to lysosomes. Such rich trafficking behaviors provide a mechanism for dynamic regulation of GIRK channel density in the plasma membrane.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11879649</pmid><doi>10.1016/S0896-6273(02)00614-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2002-02, Vol.33 (5), p.715-729 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_71499283 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Amino Acid Motifs Amino Acid Sequence Animals Brain - metabolism Cells, Cultured COS Cells Culture Media, Serum-Free Electrophysiology Endocytosis - physiology Endoplasmic Reticulum - chemistry Endoplasmic Reticulum - metabolism Fluorescent Dyes - metabolism Heart Heart - physiology Heart rate Hippocampus - cytology Hippocampus - metabolism Microscopy, Confocal Microtubules - metabolism Molecular Sequence Data Neurons - cytology Neurons - metabolism Oocytes - physiology Potassium Potassium Channels, Inwardly Rectifying - chemistry Potassium Channels, Inwardly Rectifying - metabolism Protein Sorting Signals Protein Subunits Protein Transport - physiology Proteins Rats Rats, Sprague-Dawley Sequence Alignment |
title | Diverse Trafficking Patterns Due to Multiple Traffic Motifs in G Protein-Activated Inwardly Rectifying Potassium Channels from Brain and Heart |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diverse%20Trafficking%20Patterns%20Due%20to%20Multiple%20Traffic%20Motifs%20in%20G%20Protein-Activated%20Inwardly%20Rectifying%20Potassium%20Channels%20from%20Brain%20and%20Heart&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Ma,%20Dzwokai&rft.date=2002-02-28&rft.volume=33&rft.issue=5&rft.spage=715&rft.epage=729&rft.pages=715-729&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00614-1&rft_dat=%3Cproquest_cross%3E71499283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c585t-4e4f8239de91c098374f9b1fd34f6a2b8d67bb9cb213489d01430d63e549884c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503760419&rft_id=info:pmid/11879649&rfr_iscdi=true |