Loading…
Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages
Betulinic acid (BA), a pentacyclic triterpene isolated from Lycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two grou...
Saved in:
Published in: | Archives of pharmacal research 2003-12, Vol.26 (12), p.1087-1095 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Betulinic acid (BA), a pentacyclic triterpene isolated from Lycopus lucidus, has been reported to be a selective inducer of apoptosis in various human cancer and shown anti-inflammatory and immunomodulatory properties. We postulated that BA modulates the immunomodulatory properties at least two groups of protein mediators of inflammation, interleukin-1beta (IL-1beta) and the tumor necrosis factor-alpha (TNF-alpha) on the basis of the critical role of the monocytes and tissue macrophages in inflammatory and immune responses. TNF-alpha and IL-1beta were produced by BA in a dose dependent manner at concentration of 0.625 and 10 microg/mL. The production of NO associated with iNOS was inhibited when treated with LPS at the concentration of 2.5 to 20 microg/mL of BA whereas COX-2 expression was decreased at 2.5 to 20 microg/mL. These modulations of inflammatory mediators were examined in LPS-stimulated RAW 264.7 cells and peritoneal macrophages. The morphology of macrophage was also examined and enhanced surface CD 40 molecule was expressed when treated BA at 0.625 to approximately 5 microg/mL with or without LPS. Furthermore, BA (20 microg/mL) enhanced apoptosis by producing DNA ladder in the RAW 264.7 cells. Our results indicated that BA induced activation of macrophage and pro-inflammatory cytokines. This may provide a molecular basis for the ability of BA to mediate macrophage, suppress inflammation, and modulate the immune response. |
---|---|
ISSN: | 0253-6269 1976-3786 |
DOI: | 10.1007/bf02994763 |