Loading…

Correct height measurement in noncontact atomic force microscopy

We demonstrate that topography measurements by noncontact atomic force microscopy are subject to residual electrostatic forces. On highly oriented pyrolitic graphite (HOPG) with a submonolayer coverage of C60, we monitor the step height from C60 to HOPG as a function of dc bias between tip and sampl...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2003-12, Vol.91 (26 Pt 1), p.266101-266101, Article 266101
Main Authors: Sadewasser, Sascha, Lux-Steiner, Martha Ch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate that topography measurements by noncontact atomic force microscopy are subject to residual electrostatic forces. On highly oriented pyrolitic graphite (HOPG) with a submonolayer coverage of C60, we monitor the step height from C60 to HOPG as a function of dc bias between tip and sample. Because of the different contact potential of C60 and HOPG ( approximately 50 mV), the step height is strongly dependent on the dc bias. The presented results and additional simulations demonstrate clearly that for correct height measurements it is mandatory to use a Kelvin probe force microscopy method with active compensation of electrostatic forces.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.91.266101