Loading…
Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin
Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and...
Saved in:
Published in: | Journal of agricultural and food chemistry 2002-03, Vol.50 (7), p.2142-2148 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3 |
container_end_page | 2148 |
container_issue | 7 |
container_start_page | 2142 |
container_title | Journal of agricultural and food chemistry |
container_volume | 50 |
creator | Tanaka, Takashi Mine, Chie Inoue, Kyoko Matsuda, Miyuki Kouno, Isao |
description | Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol |
doi_str_mv | 10.1021/jf011301a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71532309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71532309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</originalsourceid><addsrcrecordid>eNptkc2O0zAUhS0EYsrAghdA2YDEIuDrnzhZwjAwSCMxMEGws24cp01J7GIniD4Ob4pLqxYkVrbP-XzutS8hj4G-AMrg5bqjAJwC3iELkIzmEqC8SxY0mXkpCzgjD2JcU0pLqeh9cgZQUVYpuiC_brduWtnYx8x3Wb2y2A34o3dZF_yYXW56g5M1qySga3fnJQ6DP4rNNrsZ0E3ZlR_90rqkxz_kJz_YXeLfCR_n3nlns7RNJbNT5d2FN3YZsMWp9-7fTh6Sex0O0T46rOfk89vL-uIqv_7w7v3Fq-schZBTzpkCI7goStMJoxiVWDSNRNtK5FBVlYTkdVBy0wpZUMmAioZCy0pmUDT8nDzb526C_z7bOOmxj8YO6XnWz1ErkJxxWiXw-R40wccYbKc3oR8xbDVQvZuHPs4jsU8OoXMz2vZEHgaQgKcHAKPBoQvoTB9PHJeKi5InLt9zfZzsz6OP4ZsuFFdS1ze3-svr-quqZKnrUy6aqNd-Di793X8a_A0uZa6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71532309</pqid></control><display><type>article</type><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</creator><creatorcontrib>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</creatorcontrib><description>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf011301a</identifier><identifier>PMID: 11902970</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biflavonoids ; Biological and medical sciences ; Catechin - analogs & derivatives ; Catechin - metabolism ; Exact sciences and technology ; General pharmacology ; Kinetics ; Magnetic Resonance Spectroscopy ; Medical sciences ; Miscellaneous ; Musa - metabolism ; Natural polymers ; Oxidation-Reduction ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Plants - metabolism ; Tea - chemistry ; Tea - metabolism</subject><ispartof>Journal of agricultural and food chemistry, 2002-03, Vol.50 (7), p.2142-2148</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</citedby><cites>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13573483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11902970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Mine, Chie</creatorcontrib><creatorcontrib>Inoue, Kyoko</creatorcontrib><creatorcontrib>Matsuda, Miyuki</creatorcontrib><creatorcontrib>Kouno, Isao</creatorcontrib><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</description><subject>Applied sciences</subject><subject>Biflavonoids</subject><subject>Biological and medical sciences</subject><subject>Catechin - analogs & derivatives</subject><subject>Catechin - metabolism</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Musa - metabolism</subject><subject>Natural polymers</subject><subject>Oxidation-Reduction</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Plants - metabolism</subject><subject>Tea - chemistry</subject><subject>Tea - metabolism</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkc2O0zAUhS0EYsrAghdA2YDEIuDrnzhZwjAwSCMxMEGws24cp01J7GIniD4Ob4pLqxYkVrbP-XzutS8hj4G-AMrg5bqjAJwC3iELkIzmEqC8SxY0mXkpCzgjD2JcU0pLqeh9cgZQUVYpuiC_brduWtnYx8x3Wb2y2A34o3dZF_yYXW56g5M1qySga3fnJQ6DP4rNNrsZ0E3ZlR_90rqkxz_kJz_YXeLfCR_n3nlns7RNJbNT5d2FN3YZsMWp9-7fTh6Sex0O0T46rOfk89vL-uIqv_7w7v3Fq-schZBTzpkCI7goStMJoxiVWDSNRNtK5FBVlYTkdVBy0wpZUMmAioZCy0pmUDT8nDzb526C_z7bOOmxj8YO6XnWz1ErkJxxWiXw-R40wccYbKc3oR8xbDVQvZuHPs4jsU8OoXMz2vZEHgaQgKcHAKPBoQvoTB9PHJeKi5InLt9zfZzsz6OP4ZsuFFdS1ze3-svr-quqZKnrUy6aqNd-Di793X8a_A0uZa6q</recordid><startdate>20020327</startdate><enddate>20020327</enddate><creator>Tanaka, Takashi</creator><creator>Mine, Chie</creator><creator>Inoue, Kyoko</creator><creator>Matsuda, Miyuki</creator><creator>Kouno, Isao</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020327</creationdate><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><author>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Biflavonoids</topic><topic>Biological and medical sciences</topic><topic>Catechin - analogs & derivatives</topic><topic>Catechin - metabolism</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Musa - metabolism</topic><topic>Natural polymers</topic><topic>Oxidation-Reduction</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Plants - metabolism</topic><topic>Tea - chemistry</topic><topic>Tea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Mine, Chie</creatorcontrib><creatorcontrib>Inoue, Kyoko</creatorcontrib><creatorcontrib>Matsuda, Miyuki</creatorcontrib><creatorcontrib>Kouno, Isao</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Takashi</au><au>Mine, Chie</au><au>Inoue, Kyoko</au><au>Matsuda, Miyuki</au><au>Kouno, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2002-03-27</date><risdate>2002</risdate><volume>50</volume><issue>7</issue><spage>2142</spage><epage>2148</epage><pages>2142-2148</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11902970</pmid><doi>10.1021/jf011301a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2002-03, Vol.50 (7), p.2142-2148 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_71532309 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Biflavonoids Biological and medical sciences Catechin - analogs & derivatives Catechin - metabolism Exact sciences and technology General pharmacology Kinetics Magnetic Resonance Spectroscopy Medical sciences Miscellaneous Musa - metabolism Natural polymers Oxidation-Reduction Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Physicochemistry of polymers Plants - metabolism Tea - chemistry Tea - metabolism |
title | Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Theaflavin%20from%20Epicatechin%20and%20Epigallocatechin%20by%20Plant%20Homogenates%20and%20Role%20of%20Epicatechin%20Quinone%20in%20the%20Synthesis%20and%20Degradation%20of%20Theaflavin&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Tanaka,%20Takashi&rft.date=2002-03-27&rft.volume=50&rft.issue=7&rft.spage=2142&rft.epage=2148&rft.pages=2142-2148&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf011301a&rft_dat=%3Cproquest_cross%3E71532309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71532309&rft_id=info:pmid/11902970&rfr_iscdi=true |