Loading…

Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin

Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2002-03, Vol.50 (7), p.2142-2148
Main Authors: Tanaka, Takashi, Mine, Chie, Inoue, Kyoko, Matsuda, Miyuki, Kouno, Isao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3
cites cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3
container_end_page 2148
container_issue 7
container_start_page 2142
container_title Journal of agricultural and food chemistry
container_volume 50
creator Tanaka, Takashi
Mine, Chie
Inoue, Kyoko
Matsuda, Miyuki
Kouno, Isao
description Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol
doi_str_mv 10.1021/jf011301a
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71532309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71532309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</originalsourceid><addsrcrecordid>eNptkc2O0zAUhS0EYsrAghdA2YDEIuDrnzhZwjAwSCMxMEGws24cp01J7GIniD4Ob4pLqxYkVrbP-XzutS8hj4G-AMrg5bqjAJwC3iELkIzmEqC8SxY0mXkpCzgjD2JcU0pLqeh9cgZQUVYpuiC_brduWtnYx8x3Wb2y2A34o3dZF_yYXW56g5M1qySga3fnJQ6DP4rNNrsZ0E3ZlR_90rqkxz_kJz_YXeLfCR_n3nlns7RNJbNT5d2FN3YZsMWp9-7fTh6Sex0O0T46rOfk89vL-uIqv_7w7v3Fq-schZBTzpkCI7goStMJoxiVWDSNRNtK5FBVlYTkdVBy0wpZUMmAioZCy0pmUDT8nDzb526C_z7bOOmxj8YO6XnWz1ErkJxxWiXw-R40wccYbKc3oR8xbDVQvZuHPs4jsU8OoXMz2vZEHgaQgKcHAKPBoQvoTB9PHJeKi5InLt9zfZzsz6OP4ZsuFFdS1ze3-svr-quqZKnrUy6aqNd-Di793X8a_A0uZa6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71532309</pqid></control><display><type>article</type><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</creator><creatorcontrib>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</creatorcontrib><description>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/jf011301a</identifier><identifier>PMID: 11902970</identifier><identifier>CODEN: JAFCAU</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biflavonoids ; Biological and medical sciences ; Catechin - analogs &amp; derivatives ; Catechin - metabolism ; Exact sciences and technology ; General pharmacology ; Kinetics ; Magnetic Resonance Spectroscopy ; Medical sciences ; Miscellaneous ; Musa - metabolism ; Natural polymers ; Oxidation-Reduction ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Physicochemistry of polymers ; Plants - metabolism ; Tea - chemistry ; Tea - metabolism</subject><ispartof>Journal of agricultural and food chemistry, 2002-03, Vol.50 (7), p.2142-2148</ispartof><rights>Copyright © 2002 American Chemical Society</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</citedby><cites>FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13573483$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11902970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Mine, Chie</creatorcontrib><creatorcontrib>Inoue, Kyoko</creatorcontrib><creatorcontrib>Matsuda, Miyuki</creatorcontrib><creatorcontrib>Kouno, Isao</creatorcontrib><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</description><subject>Applied sciences</subject><subject>Biflavonoids</subject><subject>Biological and medical sciences</subject><subject>Catechin - analogs &amp; derivatives</subject><subject>Catechin - metabolism</subject><subject>Exact sciences and technology</subject><subject>General pharmacology</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medical sciences</subject><subject>Miscellaneous</subject><subject>Musa - metabolism</subject><subject>Natural polymers</subject><subject>Oxidation-Reduction</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemistry of polymers</subject><subject>Plants - metabolism</subject><subject>Tea - chemistry</subject><subject>Tea - metabolism</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNptkc2O0zAUhS0EYsrAghdA2YDEIuDrnzhZwjAwSCMxMEGws24cp01J7GIniD4Ob4pLqxYkVrbP-XzutS8hj4G-AMrg5bqjAJwC3iELkIzmEqC8SxY0mXkpCzgjD2JcU0pLqeh9cgZQUVYpuiC_brduWtnYx8x3Wb2y2A34o3dZF_yYXW56g5M1qySga3fnJQ6DP4rNNrsZ0E3ZlR_90rqkxz_kJz_YXeLfCR_n3nlns7RNJbNT5d2FN3YZsMWp9-7fTh6Sex0O0T46rOfk89vL-uIqv_7w7v3Fq-schZBTzpkCI7goStMJoxiVWDSNRNtK5FBVlYTkdVBy0wpZUMmAioZCy0pmUDT8nDzb526C_z7bOOmxj8YO6XnWz1ErkJxxWiXw-R40wccYbKc3oR8xbDVQvZuHPs4jsU8OoXMz2vZEHgaQgKcHAKPBoQvoTB9PHJeKi5InLt9zfZzsz6OP4ZsuFFdS1ze3-svr-quqZKnrUy6aqNd-Di793X8a_A0uZa6q</recordid><startdate>20020327</startdate><enddate>20020327</enddate><creator>Tanaka, Takashi</creator><creator>Mine, Chie</creator><creator>Inoue, Kyoko</creator><creator>Matsuda, Miyuki</creator><creator>Kouno, Isao</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020327</creationdate><title>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</title><author>Tanaka, Takashi ; Mine, Chie ; Inoue, Kyoko ; Matsuda, Miyuki ; Kouno, Isao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Biflavonoids</topic><topic>Biological and medical sciences</topic><topic>Catechin - analogs &amp; derivatives</topic><topic>Catechin - metabolism</topic><topic>Exact sciences and technology</topic><topic>General pharmacology</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medical sciences</topic><topic>Miscellaneous</topic><topic>Musa - metabolism</topic><topic>Natural polymers</topic><topic>Oxidation-Reduction</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemistry of polymers</topic><topic>Plants - metabolism</topic><topic>Tea - chemistry</topic><topic>Tea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Takashi</creatorcontrib><creatorcontrib>Mine, Chie</creatorcontrib><creatorcontrib>Inoue, Kyoko</creatorcontrib><creatorcontrib>Matsuda, Miyuki</creatorcontrib><creatorcontrib>Kouno, Isao</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Takashi</au><au>Mine, Chie</au><au>Inoue, Kyoko</au><au>Matsuda, Miyuki</au><au>Kouno, Isao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2002-03-27</date><risdate>2002</risdate><volume>50</volume><issue>7</issue><spage>2142</spage><epage>2148</epage><pages>2142-2148</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><coden>JAFCAU</coden><abstract>Oxidation products of (−)-epicatechin and (−)-epigallocatechin by treatment with homogenates of 62 plants belonging to 49 families were compared. Forty-six plants were capable of synthesizing theaflavin, a black tea pigment, regardless of whether they contained catechins. Loquat, Japanese pear, and blueberry had activities higher than that of fresh tea leaves after 5 h of treatment; furthermore, these plants oxidized theaflavin to theanaphthoquinone. An additional new metabolite, dehydrotheasinensin, was generated on treatment with fresh tea leaves, eggplant, and unripened Japanese orange. Evidence for the oxidation of epigallocatechin and theaflavin by electron transfer to epicatechin quinone was demonstrated in a time course study using bananas and trapping the quinone intermediates as glutathione conjugates. Keywords: Catechin; oxidation; theaflavin; dehydrotheasinensin; black tea; polyphenol</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11902970</pmid><doi>10.1021/jf011301a</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2002-03, Vol.50 (7), p.2142-2148
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_71532309
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Biflavonoids
Biological and medical sciences
Catechin - analogs & derivatives
Catechin - metabolism
Exact sciences and technology
General pharmacology
Kinetics
Magnetic Resonance Spectroscopy
Medical sciences
Miscellaneous
Musa - metabolism
Natural polymers
Oxidation-Reduction
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Physicochemistry of polymers
Plants - metabolism
Tea - chemistry
Tea - metabolism
title Synthesis of Theaflavin from Epicatechin and Epigallocatechin by Plant Homogenates and Role of Epicatechin Quinone in the Synthesis and Degradation of Theaflavin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Theaflavin%20from%20Epicatechin%20and%20Epigallocatechin%20by%20Plant%20Homogenates%20and%20Role%20of%20Epicatechin%20Quinone%20in%20the%20Synthesis%20and%20Degradation%20of%20Theaflavin&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Tanaka,%20Takashi&rft.date=2002-03-27&rft.volume=50&rft.issue=7&rft.spage=2142&rft.epage=2148&rft.pages=2142-2148&rft.issn=0021-8561&rft.eissn=1520-5118&rft.coden=JAFCAU&rft_id=info:doi/10.1021/jf011301a&rft_dat=%3Cproquest_cross%3E71532309%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a445t-3271c43468cf4c7205a6bb5aed5a3199951468f183cd456052104b01d282ca4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71532309&rft_id=info:pmid/11902970&rfr_iscdi=true