Loading…

General random matrix approach to account for the effect of static disorder on the spectral properties of light harvesting systems

We develop a random matrix model approach to study static disorder in pigment-protein complexes in photosynthetic organisms. As a case study, we examine the ring of B850 bacteriochlorophylls in the peripheral light-harvesting complex of Rhodospirillum molischianum, formulated in terms of an effectiv...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2002-03, Vol.65 (3 Pt 1), p.031916-031916
Main Authors: Sener, Melih K, Schulten, Klaus
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a random matrix model approach to study static disorder in pigment-protein complexes in photosynthetic organisms. As a case study, we examine the ring of B850 bacteriochlorophylls in the peripheral light-harvesting complex of Rhodospirillum molischianum, formulated in terms of an effective Hamiltonian describing the collective electronic excitations of the system. We numerically examine and compare various models of disorder and observe that both the density of states and the absorption spectrum of the model show remarkable spectral universality. For the case of unitary disorder, we develop a method to analytically evaluate the density of states of the ensemble using the supersymmetric formulation of random matrix theory. Succinct formulas that can be readily applied in future studies are provided in an appendix.
ISSN:1539-3755
DOI:10.1103/PhysRevE.65.031916