Loading…

The Ankyrin-B C-terminal Domain Determines Activity of Ankyrin-B/G Chimeras in Rescue of Abnormal Inositol 1,4,5-Trisphosphate and Ryanodine Receptor Distribution in Ankyrin-B (−/−) Neonatal Cardiomyocytes

Ankyrins are a closely related family of membrane adaptor proteins that are believed to participate in targeting diverse membrane proteins to specialized domains in the plasma membrane and endoplasmic reticulum. This study addresses the question of how individual ankyrin isoforms achieve functional...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2002-03, Vol.277 (12), p.10599-10607
Main Authors: Mohler, Peter J., Gramolini, Anthony O., Bennett, Vann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ankyrins are a closely related family of membrane adaptor proteins that are believed to participate in targeting diverse membrane proteins to specialized domains in the plasma membrane and endoplasmic reticulum. This study addresses the question of how individual ankyrin isoforms achieve functional specificity when co-expressed in the same cell. Cardiomyocytes from ankyrin-B (−/−) mice display mis-localization of inositol 1,4,5-trisphosphate receptors and ryanodine receptors along with reduced contraction rates that can be rescued by expression of green fluorescent protein (GFP)-ankyrin-B but not GFP-ankyrin-G. We developed chimeric GFP expression constructs containing all combinations of the three major domains of ankyrin-B and ankyrin-G to determine which domain(s) of ankyrin-B are required for ankyrin-B-specific functions. The death/C-terminal domain of ankyrin-B determined activity of ankyrin-B/G chimeras in localization in a striated pattern in cardiomyocytes and in restoration of a normal striated distribution of both ryanodine and inositol 1,4,5-trisphosphate receptors as well as normal beat frequency of contracting cardiomyocytes. Further deletions within the death/C-terminal domain demonstrated that the C-terminal domain determines ankyrin-B activity, whereas deletion of the death domain had no effect. C-terminal domains are the most divergent between ankyrin isoforms and are candidates to encode the signal(s) that enable ankyrins to selectively target proteins to diverse cellular sites.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110958200