Loading…

Conducting polymers as driving electrodes for polymer-dispersed Liquid-Crystals display devices: On the electro-optical efficiency

Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2003-07, Vol.11 (3), p.293-300
Main Authors: ROUSSEL, F, CHAN-YU-KING, R, BUISINE, J.-M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with 10-camphorsulfonic acid (PANI(HCSA)), polypyrrole doped with dodecylbenzenesulfonic acid (PPY(DBSA)), and polyethylenedioxythiophene doped with polystyrenesulfonate (PEDOT(PSS)), were prepared or purchased, and coated either on glass or plastic substrates. Optical absorption studies in the UV-Vis range of the conducting polymer-coated substrates were first performed showing the presence of conducting species for the three types of polymers. The electrical characteristics of the resulting films were measured with the four-probes technique. PANI(HCSA) exhibits a higher conductivity sigma approximately 122 S x cm(-1) (RS=1.2x10(3) Omega x (-1)) compared to PPY(DBSA) sigma approximately 2.6 S x cm(-1) (RS=150.7x10(3) Omega x (-1)), and PEDOT(PSS) sigma approximately 1.6 S x cm(-1) (RS=637.3x10(3) Omega x (-1)). It is also shown that for a given conducting polymer, its electrical conductivity decreases when a plastic substrate is used. These observations have been related to significant morphological changes observed by scanning electron microscopy (SEM). A mixture of Norland Optical Adhesive 65 and nematic liquid-crystal E7 in the weight ratio (35:65) was used as precursor of the PDLC material. Better electro-optical responses (transmission properties, drive voltages and switching times) of PDLC films were obtained for devices prepared with (PPY(DBSA))-based electrodes. The electro-optical performances of the PDLC display devices also depend on the nature of the ICP substrate used.
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2002-10158-1