Loading…

Highly clustered scale-free networks

We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power-law distribution of degree, linear preferential attachment of new links, and a negative correlation between the age of a node and its link attachment rate. N...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2002-03, Vol.65 (3 Pt 2A), p.036123-036123
Main Authors: Klemm, Konstantin, Eguíluz, Víctor M
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-93bb5cb29ae4a03eb5c01410537e240d800182615f9af4a1178e7b48aafd80c63
cites
container_end_page 036123
container_issue 3 Pt 2A
container_start_page 036123
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 65
creator Klemm, Konstantin
Eguíluz, Víctor M
description We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power-law distribution of degree, linear preferential attachment of new links, and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distribution is conserved even though only the most recently grown part of the network is considered. As the network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science, and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a correct description of the dynamics of growing networks.
doi_str_mv 10.1103/PhysRevE.65.036123
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71543972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71543972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-93bb5cb29ae4a03eb5c01410537e240d800182615f9af4a1178e7b48aafd80c63</originalsourceid><addsrcrecordid>eNo1j8FKw0AURWeh2Fr9AReShbhLfG_eTJJZSmmtUFBE12EyebHRpKmZRMnfG7CuLod7uHCFuEKIEIHunnejf-HvVRTrCChGSSdijppMSInWM3Hu_QcASUrVmZghGjCY4lzcbKr3XT0Grh58zx0XgXe25rDsmIM99z9t9-kvxGlpa8-Xx1yIt_XqdbkJt08Pj8v7behIQx8aynPtcmksKwvEEwAqBE0JSwVFCoCpjFGXxpbKIiYpJ7lKrS2nzsW0ELd_u4eu_RrY91lTecd1bffcDj5LUCsyiZzE66M45A0X2aGrGtuN2f8v-gVvMk2T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71543972</pqid></control><display><type>article</type><title>Highly clustered scale-free networks</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Klemm, Konstantin ; Eguíluz, Víctor M</creator><creatorcontrib>Klemm, Konstantin ; Eguíluz, Víctor M</creatorcontrib><description>We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power-law distribution of degree, linear preferential attachment of new links, and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distribution is conserved even though only the most recently grown part of the network is considered. As the network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science, and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a correct description of the dynamics of growing networks.</description><identifier>ISSN: 1539-3755</identifier><identifier>DOI: 10.1103/PhysRevE.65.036123</identifier><identifier>PMID: 11909181</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2002-03, Vol.65 (3 Pt 2A), p.036123-036123</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-93bb5cb29ae4a03eb5c01410537e240d800182615f9af4a1178e7b48aafd80c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11909181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klemm, Konstantin</creatorcontrib><creatorcontrib>Eguíluz, Víctor M</creatorcontrib><title>Highly clustered scale-free networks</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power-law distribution of degree, linear preferential attachment of new links, and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distribution is conserved even though only the most recently grown part of the network is considered. As the network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science, and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a correct description of the dynamics of growing networks.</description><issn>1539-3755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo1j8FKw0AURWeh2Fr9AReShbhLfG_eTJJZSmmtUFBE12EyebHRpKmZRMnfG7CuLod7uHCFuEKIEIHunnejf-HvVRTrCChGSSdijppMSInWM3Hu_QcASUrVmZghGjCY4lzcbKr3XT0Grh58zx0XgXe25rDsmIM99z9t9-kvxGlpa8-Xx1yIt_XqdbkJt08Pj8v7behIQx8aynPtcmksKwvEEwAqBE0JSwVFCoCpjFGXxpbKIiYpJ7lKrS2nzsW0ELd_u4eu_RrY91lTecd1bffcDj5LUCsyiZzE66M45A0X2aGrGtuN2f8v-gVvMk2T</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Klemm, Konstantin</creator><creator>Eguíluz, Víctor M</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20020301</creationdate><title>Highly clustered scale-free networks</title><author>Klemm, Konstantin ; Eguíluz, Víctor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-93bb5cb29ae4a03eb5c01410537e240d800182615f9af4a1178e7b48aafd80c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klemm, Konstantin</creatorcontrib><creatorcontrib>Eguíluz, Víctor M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klemm, Konstantin</au><au>Eguíluz, Víctor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly clustered scale-free networks</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>65</volume><issue>3 Pt 2A</issue><spage>036123</spage><epage>036123</epage><pages>036123-036123</pages><issn>1539-3755</issn><abstract>We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized features of real-world networks: power-law distribution of degree, linear preferential attachment of new links, and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distribution is conserved even though only the most recently grown part of the network is considered. As the network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science, and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a correct description of the dynamics of growing networks.</abstract><cop>United States</cop><pmid>11909181</pmid><doi>10.1103/PhysRevE.65.036123</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2002-03, Vol.65 (3 Pt 2A), p.036123-036123
issn 1539-3755
language eng
recordid cdi_proquest_miscellaneous_71543972
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Highly clustered scale-free networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20clustered%20scale-free%20networks&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Klemm,%20Konstantin&rft.date=2002-03-01&rft.volume=65&rft.issue=3%20Pt%202A&rft.spage=036123&rft.epage=036123&rft.pages=036123-036123&rft.issn=1539-3755&rft_id=info:doi/10.1103/PhysRevE.65.036123&rft_dat=%3Cproquest_pubme%3E71543972%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-93bb5cb29ae4a03eb5c01410537e240d800182615f9af4a1178e7b48aafd80c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71543972&rft_id=info:pmid/11909181&rfr_iscdi=true