Loading…

Silk: molecular organization and control of assembly

The interface between the science and engineering of biology and materials is an area of growing interest. One of the goals of this field is to utilize biological synthesis and processing of polymers as a route to gain insight into topics such as molecular recognition, self-assembly and the formatio...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2002-02, Vol.357 (1418), p.165-167
Main Authors: Valluzzi, R., Winkler, S., Wilson, D., Kaplan, D. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The interface between the science and engineering of biology and materials is an area of growing interest. One of the goals of this field is to utilize biological synthesis and processing of polymers as a route to gain insight into topics such as molecular recognition, self-assembly and the formation of materials with well-defined architectures. The biological processes involved in polymer synthesis and assembly can offer important information on fundamental interactions involved in the formation of complex material architectures, as well as practical knowledge into new and important materials related to biomaterial uses and tissue engineering needs. Classic approaches in biology, including genetic engineering, controlled microbial physiology and enzymatic synthesis, are prototypical methods used to control polymer structure and chemistry, including stereoselectivity and regioselectivity, to degrees unattainable using traditional synthetic chemistry. This type of control can lead to detailed and systematic studies of the formation of the structural hierarchy in materials and the subsequent biological responses to these materials.
ISSN:0962-8436
1471-2970
DOI:10.1098/rstb.2001.1032