Loading…
Shear stress induces caveolin-1 translocation in cultured endothelial cells
Considering that vascular endothelial caveolae could be flow sensors converting mechanical stimuli into chemical signals transmitted into the cell, this work studied, in vitro, the change of caveolin-1 expression and distribution of cultured endothelial cells exposed to laminar flows. Experimental r...
Saved in:
Published in: | European biophysics journal 2002-02, Vol.30 (8), p.605-611 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considering that vascular endothelial caveolae could be flow sensors converting mechanical stimuli into chemical signals transmitted into the cell, this work studied, in vitro, the change of caveolin-1 expression and distribution of cultured endothelial cells exposed to laminar flows. Experimental results showed that, in control cells, caveolin-1 were primarily localized on the cell surface, and presented some local concentrations. In cells exposed to laminar flows, caveolin-1 distribution showed a time-dependent variation. After 24 h of shear (1.0 Pa), the expression of caveolin-1 increased and a local caveolin-1 concentration was found, in most cells, at the upstream side of the cell body where the hydrostatic pressure and the spatial gradient of shear stress were at a maximum. As a comparison, tumor necrosis factor-a induced a decrease of caveolin-1 in the cells. |
---|---|
ISSN: | 0175-7571 1432-1017 |
DOI: | 10.1007/s00249-001-0195-x |