Loading…

Calmodulin interacts with MLO protein to regulate defence against mildew in barley

In plants, defence against specific isolates of a pathogen can be triggered by the presence of a corresponding race-specific resistance gene, whereas resistance of a more broad-spectrum nature can result from recessive, presumably loss-of-regulatory-function, mutations. An example of the latter are...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2002-03, Vol.416 (6879), p.447-451
Main Authors: Cho, Moo J, Schulze-Lefert, Paul, Kim, Min C, Panstruga, Ralph, Elliott, Candace, Müller, Judith, Devoto, Alessandra, Yoon, Hae W, Park, Hyeong C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In plants, defence against specific isolates of a pathogen can be triggered by the presence of a corresponding race-specific resistance gene, whereas resistance of a more broad-spectrum nature can result from recessive, presumably loss-of-regulatory-function, mutations. An example of the latter are mlo mutations in barley, which have been successful in agriculture for the control of powdery mildew fungus (Blumeria graminis f. sp. hordei; Bgh). MLO protein resides in the plasma membrane, has seven transmembrane domains, and is the prototype of a sequence-diversified family unique to plants, reminiscent of the seven-transmembrane receptors in fungi and animals. In animals, these are known as G-protein-coupled receptors and exist in three main families, lacking sequence similarity, that are thought to be an example of molecular convergence. MLO seems to function independently of heterotrimeric G proteins. We have identified a domain in MLO that mediates a Ca2+-dependent interaction with calmodulin in vitro. Loss of calmodulin binding halves the ability of MLO to negatively regulate defence against powdery mildew in vivo. We propose a sensor role for MLO in the modulation of defence reactions.
ISSN:0028-0836
1476-4687
DOI:10.1038/416447a