Loading…
Pharmaceutical evaluation of gas-filled microparticles as gene delivery system
To produce and characterize a nonviral ultrasound-controlled release system of plasmid DNA (pDNA) encapsulated in gas-filled poly(D,L-lactide-co-glycolide) microparticles (PLGA-MPs). Different cationic polymers were used to form pDNA/polymer complexes to enhance the stability of pDNA during micropar...
Saved in:
Published in: | Pharmaceutical research 2002-03, Vol.19 (3), p.250-257 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To produce and characterize a nonviral ultrasound-controlled release system of plasmid DNA (pDNA) encapsulated in gas-filled poly(D,L-lactide-co-glycolide) microparticles (PLGA-MPs).
Different cationic polymers were used to form pDNA/polymer complexes to enhance the stability of pDNA during microparticle preparation. The physico-acoustical properties of the microparticles, particle size, pDNA integrity, encapsulation efficiency and pDNA release behavior were studied in vitro.
The microparticles had an average particle size of around 5 microm. More than 50% of all microparticles contained a gas core, and when exposed to pulsed ultrasound as used for color Doppler imaging create a signal that yields typical color patterns (stimulated acoustic emission) as a result of the ultrasound-induced destruction of the microparticles. Thirty percent of the pDNA used was successfully encapsulated and approximately 10% of the encapsulated pDNA was released by ultrasound within 10 min.
Plasmid DNA can be encapsulated in biodegradable gas-filled PLGA-MPs without hints for a structural disintegration. A pDNA release by ultrasound-induced microparticle-destruction could be shown in vitro. |
---|---|
ISSN: | 0724-8741 1573-904X |
DOI: | 10.1023/a:1014430631844 |