Loading…

ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis

Although active vitamin D is used in certain countries for the treatment of osteoporosis, the risk of causing hypercalcemia/hypercalciuria means that there is only a narrow therapeutic window, and this has precluded worldwide approval. The results of our previous animal studies have suggested that t...

Full description

Saved in:
Bibliographic Details
Published in:Bone (New York, N.Y.) N.Y.), 2002-04, Vol.30 (4), p.582-588
Main Authors: Uchiyama, Y, HiguchI, Y, Takeda, S, Masaki, T, Shira-ishi, A, Sato, K, Kubodera, N, Ikeda, K, Ogata, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although active vitamin D is used in certain countries for the treatment of osteoporosis, the risk of causing hypercalcemia/hypercalciuria means that there is only a narrow therapeutic window, and this has precluded worldwide approval. The results of our previous animal studies have suggested that the therapeutic effect of active vitamin D on bone loss after estrogen deficiency can be dissociated at least partly from its effect of enhancing intestinal calcium absorption and suppressing parathyroid hormone (PTH) secretion. To test this, we compared the effects of ED-71, a hydroxypropoxy derivative of 1α,25-dihydroxyvitamin D 3, with orally administered alfacalcidol, on bone mineral density (BMD) and the bone remodeling process as a function of their effects on calcium metabolism and PTH, in a rat ovariectomy (ovx) model of osteoporosis. ED-71 increased bone mass at the lumbar vertebra to a greater extent than alfacalcidol, while enhancing calcium absorption (indicated by urinary calcium excretion) and decreasing serum PTH levels to the same degree as alfacalcidol. ED-71 lowered the biochemical and histological parameters of bone resorption more potently than alfacalcidol, while maintaining bone formation markers. These results suggest that active vitamin D exerts an antiosteoporotic effect by inhibiting osteoclastic bone resorption while maintaining osteoblastic function, and that these anticatabolic/anabolic effects of active vitamin D take place independently of its effects on calcium absorption and PTH. The demonstration that ED-71 is more potent in these properties than alfacalcidol makes it an attractive candidate as an antiosteoporotic drug.
ISSN:8756-3282
1873-2763
DOI:10.1016/S8756-3282(02)00682-8