Loading…

Cell Type-Specific Expression of Neuropilins in an MCA-Occlusion Model in Mice Suggests a Potential Role in Post-Ischemic Brain Remodeling

Neuropilin-1 and -2 (NP-1/NP-2) are transmembrane receptors that play a role in axonal guidance by binding of class III semaphorins, and in angiogenesis by binding of the vascular endothelial growth factor isoform VEGF165 and placenta growth factor (PLGF). We investigated the expression pattern of N...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuropathology and experimental neurology 2002-04, Vol.61 (4), p.339-350
Main Authors: BECK, HEIKE, ACKER, TILL, PÜSCHEL, ANDREAS W, FUJISAWA, HAJIME, CARMELIET, PETER, PLATE, KARL H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuropilin-1 and -2 (NP-1/NP-2) are transmembrane receptors that play a role in axonal guidance by binding of class III semaphorins, and in angiogenesis by binding of the vascular endothelial growth factor isoform VEGF165 and placenta growth factor (PLGF). We investigated the expression pattern of NP-1/NP-2, their co-receptors, vascular endothelial growth factor receptor-1 and -2 (VEGFR-1, VEGFR-2), and their ligands, class III semaphorins, VEGF and PLGF, following experimental cerebral ischemia in mice. By means of in situ hybridization and immunohistochemistry we observed loss of expression of class III semaphorins in neurons in the infarct/peri-infarct area. In contrast, we observed high expression of NP-1 in vessels, neurons, and astrocytes surrounding the infarct. VEGF and PLGF were upregulated in different cell types following stroke. Our results suggest a shift in the balance between semaphorins and VEGF/PLGF, which compete for NP-binding. Possibly, the loss of semaphorins facilitates binding of the competing ligands (VEGF/PLGF), thus inducing angiogenesis. In addition, the observed expression patterns further suggest a neurotrophic/neuroprotective role of VEGF/PLGF.
ISSN:0022-3069
1554-6578
DOI:10.1093/jnen/61.4.339