Loading…

Induction of early inflammatory gene expression in a murine model of nonresuscitated, fixed-volume hemorrhage

The etiology of many end-organ problems associated with hemorrhage has been attributed to the inflammatory response to hemorrhage. In a murine model of nonresuscitated, fixed-volume hemorrhage, we sought to elucidate the role that hemorrhagic insult alone plays in the generation of the early inflamm...

Full description

Saved in:
Bibliographic Details
Published in:Shock (Augusta, Ga.) Ga.), 2002-04, Vol.17 (4), p.322-328
Main Authors: RAJNIK, Michael, SALKOWSKI, Cindy A, THOMAS, Karen E, LI, Ying-Yue, ROLLWAGEN, Florence M, VOGELT, Stefanie N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The etiology of many end-organ problems associated with hemorrhage has been attributed to the inflammatory response to hemorrhage. In a murine model of nonresuscitated, fixed-volume hemorrhage, we sought to elucidate the role that hemorrhagic insult alone plays in the generation of the early inflammatory cascade. Differences could be appreciated as early as 1 h post-hemorrhage, with consistent differences detected by 3 h in all of the major cytokine genes studied. Significant upregulation of IL-1beta , IL-6, TNF-alpha, and IL-10 mRNA expression was observed in both the liver and lung samples of mice subjected to fixed-volume hemorrhage when compared with sham-hemorrhaged mice. The cyclooxygenase-2 (COX-2) and inducible nitric oxide synthetase (iNOS) genes also were upregulated in the livers and lungs of hemorrhaged mice. Finally, expression of the genes that encode the Toll-like receptors (TLR)-2 and -4 was increased by hemorrhage. Taken collectively, these data demonstrate that the initial inflammatory cascade associated with hemorrhage occurs within hours after the initial hemorrhagic event, and can be associated with significant modulation of expression of key pro- and anti-inflammatory cytokine, enzyme, and TLR genes, suggesting that these may be possible new therapeutic targets.
ISSN:1073-2322
1540-0514
DOI:10.1097/00024382-200204000-00015