Loading…
High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla
We describe the design and current performance of a 14.5 T hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometer. Ion masses are routinely determined at 4-fold better mass accuracy and 2-fold higher resolving power than similar 7 T systems at the same scan rat...
Saved in:
Published in: | Analytical chemistry (Washington) 2008-06, Vol.80 (11), p.3985-3990 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the design and current performance of a 14.5 T hybrid linear quadrupole ion trap Fourier transform ion cyclotron resonance mass spectrometer. Ion masses are routinely determined at 4-fold better mass accuracy and 2-fold higher resolving power than similar 7 T systems at the same scan rate. The combination of high magnetic field and strict control of the number of trapped ions results in external calibration broadband mass accuracy typically less than 300 ppb rms, and a resolving power of 200 000 (m/Δm 50% at m/z 400) is achieved at greater than 1 mass spectrum per second. Novel ion storage optics and methodology increase the maximum number of ions that can be delivered to the FTICR cell, thereby improving dynamic range for tandem mass spectrometry and complex mixture applications. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac800386h |