Loading…

Completeness of the classical 2D Ising model and universal quantum computation

We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2008-03, Vol.100 (11), p.110501-110501, Article 110501
Main Authors: Van den Nest, M, Dür, W, Briegel, H J
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183
cites cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183
container_end_page 110501
container_issue 11
container_start_page 110501
container_title Physical review letters
container_volume 100
creator Van den Nest, M
Dür, W
Briegel, H J
description We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.
doi_str_mv 10.1103/physrevlett.100.110501
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71632422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71632422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhhdRbK2-Qtkr71Jnsslucin1VCgqotdhs5nYSE7Nbgp9e9e24NXAP_8BPsbmCAtEEHf9Zm8H2tXk3ALhIMaAZ2yKoNJAIUbnbAogMEgB1IRdWfsDABjK5JJNMIlRKamm7HXZNb1voZas5V3J3Ya4qbW1ldE1Dx_4ylbtN2-6gmqu24KPbbWjwfrndtStGxtufMXotKu69ppdlLq2dHO6M_b19Pi5fAnWb8-r5f06MFEoXJDGUWwiKEpMqFQykVqCiMuihEQKMMLIWJAISSkjIC_zNNappNwUElJZYCJm7PbY2w_ddiTrsqayhupat9SNNlMoRRiFoTfKo9EMnfXEyqwfqkYP-wwh-yOZvXuSH7Rbe5JeO4iepA_OTwtj3lDxHzuhE7-HbHLr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71632422</pqid></control><display><type>article</type><title>Completeness of the classical 2D Ising model and universal quantum computation</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Van den Nest, M ; Dür, W ; Briegel, H J</creator><creatorcontrib>Van den Nest, M ; Dür, W ; Briegel, H J</creatorcontrib><description>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.100.110501</identifier><identifier>PMID: 18517767</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-03, Vol.100 (11), p.110501-110501, Article 110501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</citedby><cites>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18517767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van den Nest, M</creatorcontrib><creatorcontrib>Dür, W</creatorcontrib><creatorcontrib>Briegel, H J</creatorcontrib><title>Completeness of the classical 2D Ising model and universal quantum computation</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKw0AQhhdRbK2-Qtkr71Jnsslucin1VCgqotdhs5nYSE7Nbgp9e9e24NXAP_8BPsbmCAtEEHf9Zm8H2tXk3ALhIMaAZ2yKoNJAIUbnbAogMEgB1IRdWfsDABjK5JJNMIlRKamm7HXZNb1voZas5V3J3Ya4qbW1ldE1Dx_4ylbtN2-6gmqu24KPbbWjwfrndtStGxtufMXotKu69ppdlLq2dHO6M_b19Pi5fAnWb8-r5f06MFEoXJDGUWwiKEpMqFQykVqCiMuihEQKMMLIWJAISSkjIC_zNNappNwUElJZYCJm7PbY2w_ddiTrsqayhupat9SNNlMoRRiFoTfKo9EMnfXEyqwfqkYP-wwh-yOZvXuSH7Rbe5JeO4iepA_OTwtj3lDxHzuhE7-HbHLr</recordid><startdate>20080321</startdate><enddate>20080321</enddate><creator>Van den Nest, M</creator><creator>Dür, W</creator><creator>Briegel, H J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080321</creationdate><title>Completeness of the classical 2D Ising model and universal quantum computation</title><author>Van den Nest, M ; Dür, W ; Briegel, H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van den Nest, M</creatorcontrib><creatorcontrib>Dür, W</creatorcontrib><creatorcontrib>Briegel, H J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van den Nest, M</au><au>Dür, W</au><au>Briegel, H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness of the classical 2D Ising model and universal quantum computation</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-03-21</date><risdate>2008</risdate><volume>100</volume><issue>11</issue><spage>110501</spage><epage>110501</epage><pages>110501-110501</pages><artnum>110501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</abstract><cop>United States</cop><pmid>18517767</pmid><doi>10.1103/physrevlett.100.110501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2008-03, Vol.100 (11), p.110501-110501, Article 110501
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_71632422
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Completeness of the classical 2D Ising model and universal quantum computation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20of%20the%20classical%202D%20Ising%20model%20and%20universal%20quantum%20computation&rft.jtitle=Physical%20review%20letters&rft.au=Van%20den%20Nest,%20M&rft.date=2008-03-21&rft.volume=100&rft.issue=11&rft.spage=110501&rft.epage=110501&rft.pages=110501-110501&rft.artnum=110501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.100.110501&rft_dat=%3Cproquest_cross%3E71632422%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71632422&rft_id=info:pmid/18517767&rfr_iscdi=true