Loading…
Completeness of the classical 2D Ising model and universal quantum computation
We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case...
Saved in:
Published in: | Physical review letters 2008-03, Vol.100 (11), p.110501-110501, Article 110501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183 |
container_end_page | 110501 |
container_issue | 11 |
container_start_page | 110501 |
container_title | Physical review letters |
container_volume | 100 |
creator | Van den Nest, M Dür, W Briegel, H J |
description | We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states. |
doi_str_mv | 10.1103/physrevlett.100.110501 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71632422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71632422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</originalsourceid><addsrcrecordid>eNpFkNtKw0AQhhdRbK2-Qtkr71Jnsslucin1VCgqotdhs5nYSE7Nbgp9e9e24NXAP_8BPsbmCAtEEHf9Zm8H2tXk3ALhIMaAZ2yKoNJAIUbnbAogMEgB1IRdWfsDABjK5JJNMIlRKamm7HXZNb1voZas5V3J3Ya4qbW1ldE1Dx_4ylbtN2-6gmqu24KPbbWjwfrndtStGxtufMXotKu69ppdlLq2dHO6M_b19Pi5fAnWb8-r5f06MFEoXJDGUWwiKEpMqFQykVqCiMuihEQKMMLIWJAISSkjIC_zNNappNwUElJZYCJm7PbY2w_ddiTrsqayhupat9SNNlMoRRiFoTfKo9EMnfXEyqwfqkYP-wwh-yOZvXuSH7Rbe5JeO4iepA_OTwtj3lDxHzuhE7-HbHLr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71632422</pqid></control><display><type>article</type><title>Completeness of the classical 2D Ising model and universal quantum computation</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Van den Nest, M ; Dür, W ; Briegel, H J</creator><creatorcontrib>Van den Nest, M ; Dür, W ; Briegel, H J</creatorcontrib><description>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.100.110501</identifier><identifier>PMID: 18517767</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2008-03, Vol.100 (11), p.110501-110501, Article 110501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</citedby><cites>FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18517767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van den Nest, M</creatorcontrib><creatorcontrib>Dür, W</creatorcontrib><creatorcontrib>Briegel, H J</creatorcontrib><title>Completeness of the classical 2D Ising model and universal quantum computation</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKw0AQhhdRbK2-Qtkr71Jnsslucin1VCgqotdhs5nYSE7Nbgp9e9e24NXAP_8BPsbmCAtEEHf9Zm8H2tXk3ALhIMaAZ2yKoNJAIUbnbAogMEgB1IRdWfsDABjK5JJNMIlRKamm7HXZNb1voZas5V3J3Ya4qbW1ldE1Dx_4ylbtN2-6gmqu24KPbbWjwfrndtStGxtufMXotKu69ppdlLq2dHO6M_b19Pi5fAnWb8-r5f06MFEoXJDGUWwiKEpMqFQykVqCiMuihEQKMMLIWJAISSkjIC_zNNappNwUElJZYCJm7PbY2w_ddiTrsqayhupat9SNNlMoRRiFoTfKo9EMnfXEyqwfqkYP-wwh-yOZvXuSH7Rbe5JeO4iepA_OTwtj3lDxHzuhE7-HbHLr</recordid><startdate>20080321</startdate><enddate>20080321</enddate><creator>Van den Nest, M</creator><creator>Dür, W</creator><creator>Briegel, H J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080321</creationdate><title>Completeness of the classical 2D Ising model and universal quantum computation</title><author>Van den Nest, M ; Dür, W ; Briegel, H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van den Nest, M</creatorcontrib><creatorcontrib>Dür, W</creatorcontrib><creatorcontrib>Briegel, H J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van den Nest, M</au><au>Dür, W</au><au>Briegel, H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completeness of the classical 2D Ising model and universal quantum computation</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2008-03-21</date><risdate>2008</risdate><volume>100</volume><issue>11</issue><spage>110501</spage><epage>110501</epage><pages>110501-110501</pages><artnum>110501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We prove that the 2D Ising model is complete in the sense that the partition function of any classical q-state spin model (on an arbitrary graph) can be expressed as a special instance of the partition function of a 2D Ising model with complex inhomogeneous couplings and external fields. In the case where the original model is an Ising or Potts-type model, we find that the corresponding 2D square lattice requires only polynomially more spins with respect to the original one, and we give a constructive method to map such models to the 2D Ising model. For more general models the overhead in system size may be exponential. The results are established by connecting classical spin models with measurement-based quantum computation and invoking the universality of the 2D cluster states.</abstract><cop>United States</cop><pmid>18517767</pmid><doi>10.1103/physrevlett.100.110501</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2008-03, Vol.100 (11), p.110501-110501, Article 110501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_71632422 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Completeness of the classical 2D Ising model and universal quantum computation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completeness%20of%20the%20classical%202D%20Ising%20model%20and%20universal%20quantum%20computation&rft.jtitle=Physical%20review%20letters&rft.au=Van%20den%20Nest,%20M&rft.date=2008-03-21&rft.volume=100&rft.issue=11&rft.spage=110501&rft.epage=110501&rft.pages=110501-110501&rft.artnum=110501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.100.110501&rft_dat=%3Cproquest_cross%3E71632422%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-9545c40df18ef7686a6035fdf08630c3c653e32e77c30bfb95a96ebcd6096d183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71632422&rft_id=info:pmid/18517767&rfr_iscdi=true |