Loading…

Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy

Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2002-04, Vol.959 (1), p.368-383
Main Authors: VINCENT, ANDREA M., BROWNLEE, MICHAEL, RUSSELL, JAMES W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3
cites cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3
container_end_page 383
container_issue 1
container_start_page 368
container_title Annals of the New York Academy of Sciences
container_volume 959
creator VINCENT, ANDREA M.
BROWNLEE, MICHAEL
RUSSELL, JAMES W.
description Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.
doi_str_mv 10.1111/j.1749-6632.2002.tb02108.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71638189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888962547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</originalsourceid><addsrcrecordid>eNqVkEFP2zAYhq2JaZRufwFFO6BdkvmzE9vhgkqBbhK0SN1AnCzX-TLctU1np9D-e1y1YjckfLFkP-_72Q8hX4FmENf3aQYyL1MhOMsYpSxrJ5QBVdn6A-m8Xh2QDqVSpqpk_JAchTClFJjK5SdyCFBKwQA6pDdau8q07gmTcesxhMQsquTWN3-8mc-xSvo4myUXaNrHxC2SC2cm2DqbDHHlm2U83XwmH2szC_hlv3fJ76vLX_0f6fVo8LPfu05tIahKhc0lTDhCwSpaVKYSYGtrAOOPcqkUN5ZaqirBla1NzqgoUVIJrKoLWUvkXXKy61365t8KQ6vnLtj4OrPAZhW0hBgFVUbw25sgKKVKwYpcRvR0h1rfhOCx1kvv5sZvNFC9da2neitUb4XqrWu9d63XMXy8n7OaRFP_o3u5ETjbAc9uhpt3VOvhQ2_MhYoN6a7BhRbXrw3G_9VCclno--FA3w_ubs9vyjs95i-lN5zs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888962547</pqid></control><display><type>article</type><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><source>Wiley</source><creator>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</creator><creatorcontrib>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</creatorcontrib><description>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2002.tb02108.x</identifier><identifier>PMID: 11976211</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Apoptosis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspases - metabolism ; diabetes ; Diabetic Neuropathies - physiopathology ; Ganglia, Spinal - cytology ; Ganglia, Spinal - metabolism ; Glucose - metabolism ; Humans ; Hyperglycemia - physiopathology ; Ion Channels ; Membrane Potentials ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins ; Mitochondrial Swelling ; Nerve Growth Factor - pharmacology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; neuropathy ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Schwann Cells - drug effects ; Schwann Cells - metabolism ; Schwann Cells - ultrastructure ; Uncoupling Agents - metabolism ; Uncoupling Protein 1</subject><ispartof>Annals of the New York Academy of Sciences, 2002-04, Vol.959 (1), p.368-383</ispartof><rights>2002 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</citedby><cites>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11976211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VINCENT, ANDREA M.</creatorcontrib><creatorcontrib>BROWNLEE, MICHAEL</creatorcontrib><creatorcontrib>RUSSELL, JAMES W.</creatorcontrib><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspases - metabolism</subject><subject>diabetes</subject><subject>Diabetic Neuropathies - physiopathology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Hyperglycemia - physiopathology</subject><subject>Ion Channels</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Mitochondrial Swelling</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>neuropathy</subject><subject>Oxidative Stress</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Schwann Cells - drug effects</subject><subject>Schwann Cells - metabolism</subject><subject>Schwann Cells - ultrastructure</subject><subject>Uncoupling Agents - metabolism</subject><subject>Uncoupling Protein 1</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqVkEFP2zAYhq2JaZRufwFFO6BdkvmzE9vhgkqBbhK0SN1AnCzX-TLctU1np9D-e1y1YjckfLFkP-_72Q8hX4FmENf3aQYyL1MhOMsYpSxrJ5QBVdn6A-m8Xh2QDqVSpqpk_JAchTClFJjK5SdyCFBKwQA6pDdau8q07gmTcesxhMQsquTWN3-8mc-xSvo4myUXaNrHxC2SC2cm2DqbDHHlm2U83XwmH2szC_hlv3fJ76vLX_0f6fVo8LPfu05tIahKhc0lTDhCwSpaVKYSYGtrAOOPcqkUN5ZaqirBla1NzqgoUVIJrKoLWUvkXXKy61365t8KQ6vnLtj4OrPAZhW0hBgFVUbw25sgKKVKwYpcRvR0h1rfhOCx1kvv5sZvNFC9da2neitUb4XqrWu9d63XMXy8n7OaRFP_o3u5ETjbAc9uhpt3VOvhQ2_MhYoN6a7BhRbXrw3G_9VCclno--FA3w_ubs9vyjs95i-lN5zs</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>VINCENT, ANDREA M.</creator><creator>BROWNLEE, MICHAEL</creator><creator>RUSSELL, JAMES W.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T5</scope><scope>7TK</scope><scope>C1K</scope><scope>H94</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>200204</creationdate><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><author>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspases - metabolism</topic><topic>diabetes</topic><topic>Diabetic Neuropathies - physiopathology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Hyperglycemia - physiopathology</topic><topic>Ion Channels</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Mitochondrial Swelling</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>neuropathy</topic><topic>Oxidative Stress</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Schwann Cells - drug effects</topic><topic>Schwann Cells - metabolism</topic><topic>Schwann Cells - ultrastructure</topic><topic>Uncoupling Agents - metabolism</topic><topic>Uncoupling Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VINCENT, ANDREA M.</creatorcontrib><creatorcontrib>BROWNLEE, MICHAEL</creatorcontrib><creatorcontrib>RUSSELL, JAMES W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VINCENT, ANDREA M.</au><au>BROWNLEE, MICHAEL</au><au>RUSSELL, JAMES W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2002-04</date><risdate>2002</risdate><volume>959</volume><issue>1</issue><spage>368</spage><epage>383</epage><pages>368-383</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11976211</pmid><doi>10.1111/j.1749-6632.2002.tb02108.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2002-04, Vol.959 (1), p.368-383
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_71638189
source Wiley
subjects Animals
Apoptosis
Carrier Proteins - genetics
Carrier Proteins - metabolism
Caspases - metabolism
diabetes
Diabetic Neuropathies - physiopathology
Ganglia, Spinal - cytology
Ganglia, Spinal - metabolism
Glucose - metabolism
Humans
Hyperglycemia - physiopathology
Ion Channels
Membrane Potentials
Membrane Proteins - genetics
Membrane Proteins - metabolism
mitochondria
Mitochondria - metabolism
Mitochondrial Proteins
Mitochondrial Swelling
Nerve Growth Factor - pharmacology
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
neuropathy
Oxidative Stress
Rats
Rats, Sprague-Dawley
Reactive Oxygen Species - metabolism
Schwann Cells - drug effects
Schwann Cells - metabolism
Schwann Cells - ultrastructure
Uncoupling Agents - metabolism
Uncoupling Protein 1
title Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Stress%20and%20Programmed%20Cell%20Death%20in%20Diabetic%20Neuropathy&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=VINCENT,%20ANDREA%20M.&rft.date=2002-04&rft.volume=959&rft.issue=1&rft.spage=368&rft.epage=383&rft.pages=368-383&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2002.tb02108.x&rft_dat=%3Cproquest_cross%3E1888962547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1888962547&rft_id=info:pmid/11976211&rfr_iscdi=true