Loading…
Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy
Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic...
Saved in:
Published in: | Annals of the New York Academy of Sciences 2002-04, Vol.959 (1), p.368-383 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3 |
container_end_page | 383 |
container_issue | 1 |
container_start_page | 368 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 959 |
creator | VINCENT, ANDREA M. BROWNLEE, MICHAEL RUSSELL, JAMES W. |
description | Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy. |
doi_str_mv | 10.1111/j.1749-6632.2002.tb02108.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71638189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888962547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</originalsourceid><addsrcrecordid>eNqVkEFP2zAYhq2JaZRufwFFO6BdkvmzE9vhgkqBbhK0SN1AnCzX-TLctU1np9D-e1y1YjckfLFkP-_72Q8hX4FmENf3aQYyL1MhOMsYpSxrJ5QBVdn6A-m8Xh2QDqVSpqpk_JAchTClFJjK5SdyCFBKwQA6pDdau8q07gmTcesxhMQsquTWN3-8mc-xSvo4myUXaNrHxC2SC2cm2DqbDHHlm2U83XwmH2szC_hlv3fJ76vLX_0f6fVo8LPfu05tIahKhc0lTDhCwSpaVKYSYGtrAOOPcqkUN5ZaqirBla1NzqgoUVIJrKoLWUvkXXKy61365t8KQ6vnLtj4OrPAZhW0hBgFVUbw25sgKKVKwYpcRvR0h1rfhOCx1kvv5sZvNFC9da2neitUb4XqrWu9d63XMXy8n7OaRFP_o3u5ETjbAc9uhpt3VOvhQ2_MhYoN6a7BhRbXrw3G_9VCclno--FA3w_ubs9vyjs95i-lN5zs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888962547</pqid></control><display><type>article</type><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><source>Wiley</source><creator>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</creator><creatorcontrib>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</creatorcontrib><description>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1111/j.1749-6632.2002.tb02108.x</identifier><identifier>PMID: 11976211</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Apoptosis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Caspases - metabolism ; diabetes ; Diabetic Neuropathies - physiopathology ; Ganglia, Spinal - cytology ; Ganglia, Spinal - metabolism ; Glucose - metabolism ; Humans ; Hyperglycemia - physiopathology ; Ion Channels ; Membrane Potentials ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; mitochondria ; Mitochondria - metabolism ; Mitochondrial Proteins ; Mitochondrial Swelling ; Nerve Growth Factor - pharmacology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; neuropathy ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Schwann Cells - drug effects ; Schwann Cells - metabolism ; Schwann Cells - ultrastructure ; Uncoupling Agents - metabolism ; Uncoupling Protein 1</subject><ispartof>Annals of the New York Academy of Sciences, 2002-04, Vol.959 (1), p.368-383</ispartof><rights>2002 The New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</citedby><cites>FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11976211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>VINCENT, ANDREA M.</creatorcontrib><creatorcontrib>BROWNLEE, MICHAEL</creatorcontrib><creatorcontrib>RUSSELL, JAMES W.</creatorcontrib><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Caspases - metabolism</subject><subject>diabetes</subject><subject>Diabetic Neuropathies - physiopathology</subject><subject>Ganglia, Spinal - cytology</subject><subject>Ganglia, Spinal - metabolism</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Hyperglycemia - physiopathology</subject><subject>Ion Channels</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins</subject><subject>Mitochondrial Swelling</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>neuropathy</subject><subject>Oxidative Stress</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Schwann Cells - drug effects</subject><subject>Schwann Cells - metabolism</subject><subject>Schwann Cells - ultrastructure</subject><subject>Uncoupling Agents - metabolism</subject><subject>Uncoupling Protein 1</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqVkEFP2zAYhq2JaZRufwFFO6BdkvmzE9vhgkqBbhK0SN1AnCzX-TLctU1np9D-e1y1YjckfLFkP-_72Q8hX4FmENf3aQYyL1MhOMsYpSxrJ5QBVdn6A-m8Xh2QDqVSpqpk_JAchTClFJjK5SdyCFBKwQA6pDdau8q07gmTcesxhMQsquTWN3-8mc-xSvo4myUXaNrHxC2SC2cm2DqbDHHlm2U83XwmH2szC_hlv3fJ76vLX_0f6fVo8LPfu05tIahKhc0lTDhCwSpaVKYSYGtrAOOPcqkUN5ZaqirBla1NzqgoUVIJrKoLWUvkXXKy61365t8KQ6vnLtj4OrPAZhW0hBgFVUbw25sgKKVKwYpcRvR0h1rfhOCx1kvv5sZvNFC9da2neitUb4XqrWu9d63XMXy8n7OaRFP_o3u5ETjbAc9uhpt3VOvhQ2_MhYoN6a7BhRbXrw3G_9VCclno--FA3w_ubs9vyjs95i-lN5zs</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>VINCENT, ANDREA M.</creator><creator>BROWNLEE, MICHAEL</creator><creator>RUSSELL, JAMES W.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T5</scope><scope>7TK</scope><scope>C1K</scope><scope>H94</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>200204</creationdate><title>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</title><author>VINCENT, ANDREA M. ; BROWNLEE, MICHAEL ; RUSSELL, JAMES W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Caspases - metabolism</topic><topic>diabetes</topic><topic>Diabetic Neuropathies - physiopathology</topic><topic>Ganglia, Spinal - cytology</topic><topic>Ganglia, Spinal - metabolism</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Hyperglycemia - physiopathology</topic><topic>Ion Channels</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins</topic><topic>Mitochondrial Swelling</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>neuropathy</topic><topic>Oxidative Stress</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Schwann Cells - drug effects</topic><topic>Schwann Cells - metabolism</topic><topic>Schwann Cells - ultrastructure</topic><topic>Uncoupling Agents - metabolism</topic><topic>Uncoupling Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VINCENT, ANDREA M.</creatorcontrib><creatorcontrib>BROWNLEE, MICHAEL</creatorcontrib><creatorcontrib>RUSSELL, JAMES W.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VINCENT, ANDREA M.</au><au>BROWNLEE, MICHAEL</au><au>RUSSELL, JAMES W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2002-04</date><risdate>2002</risdate><volume>959</volume><issue>1</issue><spage>368</spage><epage>383</epage><pages>368-383</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>Recent evidence in both animal models and human sural nerve biopsies indicates an association with oxidative stress, mitochondrial (Mt) membrane depolarization (MMD), and induction of programmed cell death (PCD). In streptozotocin (STZ)‐treated diabetic rats, hyperglycemia induces typical apoptotic changes as well as swelling and disruption of the Mt cristae in diabetic dorsal root ganglion neurons (DRG) and Schwann cells (SC), but these changes are only rarely observed in control neurons. In human sural nerve biopsies, from patients with diabetic sensory neuropathy, there is transmission electromicrograph evidence of swelling and disruption of the Mt and cristae compared to patients without peripheral neuropathy. In human SH‐SY5Y neurons, rat sensory neurons, and SC, in vivo, there is an increase in reactive oxygen species (ROS) after exposure to 20 mM added glucose. In parallel, there is an initial Mt membrane hyperpolarization followed by depolarization (MMD). In turn, MMD is coupled with cleavage of caspases. Various strategies aimed at inhibiting the oxidative burst, or stabilizing the ΔΨM, block induction of PCD. First, growth factors such as NGF can block induction of ROS and/or stabilize the ΔΨM. This, in turn, is associated with inhibition of PCD. Second, reduction of ROS generation in neuronal Mt prevents neuronal PCD. Third, up‐regulation of uncoupling proteins (UCPs), which stabilize the ΔΨM, blocks induction of caspase cleavage. Collectively, these findings indicate that hyperglycemic conditions observed in diabetes mellitus are associated with oxidative stress‐induced neuronal and SC death, and targeted therapies aimed at regulating ROS may prove effective in therapy of diabetic neuropathy.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11976211</pmid><doi>10.1111/j.1749-6632.2002.tb02108.x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2002-04, Vol.959 (1), p.368-383 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_71638189 |
source | Wiley |
subjects | Animals Apoptosis Carrier Proteins - genetics Carrier Proteins - metabolism Caspases - metabolism diabetes Diabetic Neuropathies - physiopathology Ganglia, Spinal - cytology Ganglia, Spinal - metabolism Glucose - metabolism Humans Hyperglycemia - physiopathology Ion Channels Membrane Potentials Membrane Proteins - genetics Membrane Proteins - metabolism mitochondria Mitochondria - metabolism Mitochondrial Proteins Mitochondrial Swelling Nerve Growth Factor - pharmacology Neurons - cytology Neurons - drug effects Neurons - metabolism neuropathy Oxidative Stress Rats Rats, Sprague-Dawley Reactive Oxygen Species - metabolism Schwann Cells - drug effects Schwann Cells - metabolism Schwann Cells - ultrastructure Uncoupling Agents - metabolism Uncoupling Protein 1 |
title | Oxidative Stress and Programmed Cell Death in Diabetic Neuropathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20Stress%20and%20Programmed%20Cell%20Death%20in%20Diabetic%20Neuropathy&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=VINCENT,%20ANDREA%20M.&rft.date=2002-04&rft.volume=959&rft.issue=1&rft.spage=368&rft.epage=383&rft.pages=368-383&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1111/j.1749-6632.2002.tb02108.x&rft_dat=%3Cproquest_cross%3E1888962547%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5608-6c471b3e152d05dad61cfca1e11147883ac0c08d638cfa42069e70712df57f7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1888962547&rft_id=info:pmid/11976211&rfr_iscdi=true |