Loading…
Synthesis, biological activity and molecular modeling studies of novel COX-1 inhibitors
Synthesis of new potential COX-1 and/or COX-2 inhibitors, derivatives of 1,1-di-(3-carboxyphenyl)ethane, their biological activity, docking results on COX-1 enzyme and absorption, distribution, metabolism, excretion (ADME) properties are presented. In addition to known interactions between ketoprofe...
Saved in:
Published in: | European journal of medicinal chemistry 2004-02, Vol.39 (2), p.141-151 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Synthesis of new potential COX-1 and/or COX-2 inhibitors, derivatives of 1,1-di-(3-carboxyphenyl)ethane, their biological activity, docking results on COX-1 enzyme and absorption, distribution, metabolism, excretion (ADME) properties are presented. In addition to known interactions between ketoprofen and ibuprofen, leading NSAID agents and COX-1 active site, the possibility of formation of additional interactions is explored. Interactions with Ala527, and with one of the water molecules situated within the active site are identified. Molecular mechanics and DFT calculations for studied compounds have revealed free rotation around two central bonds (C
1–C
3′ and C
1–C
3″), making them flexible, thus easier to enter and adjust to the active site. Further modifications of core structure have been undertaken to optimize biological activity and ADME properties. As a result, two of the compounds are indicated as novel COX-1 inhibitors. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2003.11.011 |