Loading…

Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea

A desensitized aspartate kinase (AK) gene has been developed as a non-antibiotic selection marker for use in the production of transgenic chickpea ( Cicer arietinum L.). Transgenic shoots regenerated from embryo explants bombarded with the desensitized AK gene were selected on media containing two a...

Full description

Saved in:
Bibliographic Details
Published in:Plant cell reports 2004-03, Vol.22 (8), p.576-583
Main Authors: Tewari-Singh, N, Sen, J, Kiesecker, H, Reddy, V S, Jacobsen, H-J, Guha-Mukherjee, S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A desensitized aspartate kinase (AK) gene has been developed as a non-antibiotic selection marker for use in the production of transgenic chickpea ( Cicer arietinum L.). Transgenic shoots regenerated from embryo explants bombarded with the desensitized AK gene were selected on media containing two amino acids, lysine and threonine (LT). Approximately 15% of the putative transgenic shoots of vars. P-362 and P-1042 survived after 4 weeks of growth on MSB5 medium (MS mineral salts and B5 vitamins) containing 2 microM thidiazuron (TDZ) and 2 mM lysine and 2 m M threonine. These shoots were subsequently grown on MSB5 medium supplemented with 2 micro M TDZ and 5 mM lysine and 5 mM threonine, and nearly 1% continued to grow after 16 weeks of selection. A phosphinothricin (PPT) selection system for Agrobacterium-mediated chickpea transformation was also developed. Three varieties of chickpea, P-362, P-1042 and P-1043, were successfully used for Agrobacterium transformation. Following Agrobacterium infection, 3-8% of the regenerated shoots remained green and continued to grow on MSB5 medium supplemented with 2.5 mg l(-1 )PPT. Increasing the concentrations of PPT to 15 mg l(-1) reduced transgenic shoot production in P-362, P-1042 and P-1043 to 0.7%, 1.2% and 1.1%, respectively. Selected putatively transformed shoots of all three varieties were rooted and grown to maturity. Southern hybridization analysis revealed single as well as multiple integration of genes in selected transgenic lines. The level of AK activity detected in LT-selected plants was higher than that detected in the non-transformed control.
ISSN:0721-7714
1432-203X
DOI:10.1007/s00299-003-0730-6