Loading…

Nickel Complexes with New Bidentate P,N Phosphinitooxazoline and -Pyridine Ligands:  Application for the Catalytic Oligomerization of Ethylene

The phosphinitooxazoline 4,4-dimethyl-2-[1-oxy(diphenylphosphine)-1-methylethyl]-4,5-dihydrooxazole (9), the corresponding phosphinitopyridine ligands 2-ethyl-[1‘-methyl-1‘-oxy(diphenylphosphino)]pyridine (11) and 2-ethyl-6-methyl-[1‘-methyl-1‘-oxy(diphenylphosphino)]pyridine (12), which have a one-...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic chemistry 2004-03, Vol.43 (5), p.1649-1658
Main Authors: Speiser, Fredy, Braunstein, Pierre, Saussine, Lucien, Welter, Richard
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phosphinitooxazoline 4,4-dimethyl-2-[1-oxy(diphenylphosphine)-1-methylethyl]-4,5-dihydrooxazole (9), the corresponding phosphinitopyridine ligands 2-ethyl-[1‘-methyl-1‘-oxy(diphenylphosphino)]pyridine (11) and 2-ethyl-6-methyl-[1‘-methyl-1‘-oxy(diphenylphosphino)]pyridine (12), which have a one-carbon spacer between the phosphinite oxygen and the heterocycle, and the homologous ligand 2-propyl-[2‘-methyl-2‘-oxy(diphenylphosphino)]pyridine (13), with a two-carbon spacer, were prepared in good yields. The corresponding mononuclear [NiCl2(P,N)] complexes 14 (P,N = 9), 15 (P,N = 11), and 16 (P,N = 12) and the dinuclear [NiCl(μ-Cl)(P,N)]2 17 (P,N = 13) Ni(II) complex were evaluated in the catalytic oligomerization of ethylene. These four complexes were characterized by single-crystal X-ray diffraction in the solid state and in solution with the help of the Evans method, which indicated differences between the coordination spheres in the solution and the solid state. In the presence of methylalumoxane (MAO) or AlEt3, only the decomposition of the Ni complexes was observed. However, complexes 14−17 provided activities up to 50 000 mol C2H4/(mol Ni)·h (16 and 17) in the presence of only 6 equiv of AlEtCl2. The observed selectivities for ethylene dimers were higher than 91% (for 14 or 15 in the presence of only 1.3 equiv of AlEtCl2). The activities for 14−17 were superior to that of [NiCl2(PCy3)2], a typical dimerization catalyst taken as a reference. The selectivities of the complexes 14−17 for ethylene dimers and α-olefins were the same order of magnitude. From the study of the phosphinite 9/AlEtCl2 system, we concluded that in our case ligand transfer from the nickel atom to the aluminum cocatalyst is unlikely to represent an activation mechanism.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic035132i